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B I. INTRODUCTION

A

% This thesis deals with detection and estimation using spatially separated sensors.

f- A typical practical situation is a surveillance system (1] in which a large number of

’: . sensors monitor some region of space, earth or sea and report their findings to a global

’: processor. The sensors themselves may use thermal, acoustic or infrared effects to form

K", their observations. The global processor performs some processing on the data to come

o with a decision or for taking actions. Because of many considerations such as

»» bandwidth communication limitations, time delay or because the amount of

{.‘ information is too massive to be processed by a single processor, the processing is

s carried out on many levels. As an example consider the case of distributed detection.

:. Detection is performed at the sensor level and at the fusion center.

Due to the loss of information in the local processing, the overall performance

¢ degrades. However a great communication bandwidth reduction results. If the

™ communication channels can support more information flow, then it is wise to perform

\ “softer” processing at the local level, to send more information to the fusion center, and

_ N to use the information available there effectively.

f. . The purpose of this chapter is to define the Distributed Signal Processing (DSP)

: problem in general and to show some reasons and situations in which it replaces

! Centralized Signal Processing (CSP) techniques. We then will review the status of the

:: research on Decentralized Detection (DD) problem, one of the basic problems of DSP.
Finally the contributions and organization of this thesis are described.

o A. OVERVIEW

:; Classical (Centralized) Signal Processing (CSP) assumes complete availability of

.' all information (signals) at one central processor for processing (decision making,

2 computing, detection, estimation, etc...). While this situation is realistic in some cases,

7 many real world svstems are too large for the classical processing to be practically

ﬁ applied. Power systems, detection networks, large manufacturing systems and military

2 organizations are among those systems in which total centralized signal processing is

2 hard to apply. Some of the reasons and considerations for the limations of CSP are

;; [2,3]:

<.

)
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A\ 1. In large systems, each processor has partial information of some credibility.
:3 While total information is distributed in the whole system, total centeralization
£ of the information at one processor is impractical, inconvenient or expensive
o due to limitations in the system’s communication channels, memory or
(. computation and information capabilities.

2. In some cases, processing speed is a bottleneck. Increasing local processing of .
N the data at each processor and sending processed data to the next level of
N processors will help relicve the problem.

.
\ 3. When reliability of the system is of major concern, distributed processing may

\ better tolerate various kinds of equipment failures. Less complex centralized

> processing is more easily shifted to a new location.

5 4. In cases when security is a major problem, increasing local processing will

N decrease the information handled between the processors, so limit any other

x> system’s access to the process.

{_ 5. As the cost of computation has decreased dramatically relative to the cost of

re communication, it is advantageous to trade off increased computation for

-
-

',: reduced communication. So in Distributed Sensor Networks (DSN) involving

* “' geographically distributed sensors that collect data, it may be more economical

: i~ to locally process the data and send condensed summaries to other processors.

‘, Distributed Signal Processing (DSP), in contrast to CSP, has several processors

’_f:\: that cooperate together to best achieve a global task according to some criterion. A

::; basic problem in DSP, which has attracted much attention recently, is the 1
::? Decentralized Detection (DD) problem (hypothesis testing). The DD problem will be
_ a major concern in this thesis. A summary of its status is given in the following section. 4
)'_'.

o B. MOTIVATION

,- There has been an increased interest in the DD problem since Tenney and

?) Sandell introduced it in 1981 [5]. Theyv extended the classical Bayesian formulation of

- the detection problem to distributed environments. Because their work was the

" pioneering one in DD and because we will refer to it often in this thesis , let us

\.: consider it now in some detail together with the Centralized Detection (CD) problem.
;' Also, because detection is dealt with throughout a large portion of this thesis, we will
"J make some remarks about the phenomena to be detected and about detection criterion.
The Phenomena
.» Consider observing a phenomena H of M possible states in order to determine

_0' which of them is true. For M = 2, the state H, is called the null hypothesis and H, |
il the alternative hypothesis. Their probabilities of occurrence

,_:z
o P(Hy)=P,. P(H)=P, (1.1)

[ 2
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are assumed to be known.
The Sensor Observations
The phenomena H 1is observed by N sensors Sl’SZ”"’SN . The sensor

observations are DTN N The sensor observations have known conditional
distributions

P(Y Yo ¥n/Hp)  P(YYoee¥y /HY ) (1.2)

Detection Criterion

The function of the detection process is to make a decision, U,, about which
state of the phenomena is true. The optimality criterion is a function
J: U xH - Z, (1.3)

that assigns to the event of deciding u; when Hj is true a real number Cij' 1,j=0,1.
called the detection cost, so

JC, =y H =Hj)= G (1.4)
The objective of the decision rule will be to minimize the expected decision cost
min E{J(u,H)}. (1.5)

An important ratio in our analysis is the constant given by

Po (Cm‘cno) _

(1.6)
Pl (Cm'cn)
Van Trees [6] showed that the average decision cost is given by,
R =Cpy Py +Cqy Py + Py (Cyy -Cy ) Pp-Py (Cyy -Cy IPy (1.7)
17
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where P, and P, are the probability of false alarm! and probability of detection®
respectively. At this point we will make the assumptions that

Co > Cyip» (1.8)
and
Cio > Coo (1.9)

These assumptions implies that it is more costly to err than to make a correct decision.
Equation (1.7) can then be written in the form:

CnP, +C,, P P, (C,,-C
R=[ 00 %o *Co1 1 4 Ta(C10 oo ) Pf-Pd] P, (Cy; -Cy ) - (1.10)
Pr(Co-Cyy) PGy Cyy)
Ignoring positive constants that will not affect our analysis, the average decision cost
R is given by

R=1+CP.-P,. (1.11)

1. The Centralized Detection (CD) Problem
The problem of centralized binarv hypothesis testing can be posed in its most
general form as follows. For the structure of Figure 1.1 it is assumed that all sensor
observations can be sent to one (central) location for processing. The function of the

processor is to map the vector Y= [y, ¥, ... ¥y |! into the decision space U&subo(0,1)
L= (01 (1.12)

as follows:

(1.13)

o]

U = 0, H0 is declared to have been detected
I, Hl 1s declared to have been detected.

!Probability of deciding U =0 while H, is true
2Probability of deciding U, .= 1 while H is true

18
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Solution of the CD Problem
The solution to the CD problem is [6]
a) deterministic, so that the decision rule is a function of the observations

T: Y, XY, x.XYy = (0,1), (1.14)

b) a likelihood ratio test,

0, FA(yy¥N) 2t
U (y¥yp IN)= {1 A < (1.15)
' (¥ ¥pe¥N ) <
where
(¥, VsV 'H)
A (YY) = ey 1 . (1.16)
f()l,yzv"iy;\’ ‘Ho)
¢) and the threshold t is given by
t=C. (1.17)

2. The Decentralized Detection (DD) Problem with Fusion
Consider the structure of Figure 1.2 with H and Y being as before; the
decisions U, ,U, ,... and Uy are sent to a fusion center. The activity of the fusion

center is to make the global decision U _ according to some preset fusion rule.
L, : U xU,.xU = (0,1). (1.18)

In the DD problem with fusion it is required to design local decision rules U},L,,...
and Uy and a global fusion rule (1.18) so as to minimize the expected cost E{J(LC, H))
incurred by deciding U =i when Hi is true.

Choosing an AND fusion rule apriori, Tenney and Sandell solved this problem
for N=2. They set the decision rule as U =L, U, and optimized the local decision
rules.
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Solution of DD Problem with Fusion
The solution to the DD problem with fusion is

1. deterministic
Y, Y, = (0,1) (1.19)
and
Y,: Y, = (0,1) (1.20)

2. a likelihood ratio test for each detector

. 0, A (vis t
U, = { : ifAI (vf)z :-I (1.21)
’ i Vi< M

where

Ay = )

1.22
t 7t f(}‘ ’JHO ) ( )

3. with coupled thresholds t, and t, given by

Pr(F, V)
Pr(D, 'y, )

and

o _PrE 1y
Pr(D1 'Yy)

(1.24)

where Pr(Fi 'Y; ) and Pr(D, /yi ) are respectively the conditional probability of
false alarm and the conditional probability of detection of the 1, detector given
the j,, detector’s observation.
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4
,5-,," Equations (1.23 ) and (1.24 ) are two coupled functional equations in t, and t, . For
K ' general distributions, a functional expression for each of them in terms of its own
R observation and the other detector’s decision is impossible. We shall consider the
; complexity of these decision rules later. A special case of the DD problem is the case
‘.i... of conditionally independent sensor observations, i.e.
S50
b . H)e
R fly, /vy, H)=1fy, /H) (1.25)
0
v
‘?!'l and
:' \
i@ fly, 'y, H)=Ry, /H). (1.26)
,\_ In this case, the conditional probabilities in (1.23 ) and (1.24) reduce to
B ‘i‘.‘v
'.;:: P i
K t, = C—L (1.27)
° Pys
ax
S
he e and
g
0‘) l P
[4
! t, = C—=1— (1.28)
> P
dl

".'vr'i".) A8
".‘l‘ PLEN
X 2 € a

Equations (1.27) and (1.28) are two coupled algebraic equations in the form of

2

-
-
-

‘o

g

L . . . .

! ; since Py and P, depend on t. . This coupling represents cooperation between the two
® sensors. The threshold equations are necessary conditions for optimality. There may

; -r';" be several local minima; each must be checked to assure the global minima. The
By threshold equations are strongly coupled for general cost assumptions.

f‘.v . .

o Tenney and Sandell came to the following conclusions:

0. 1. Increasing the signal-to-noise ratio improves the performance of the svstem.
:j-/:f However a centralized system makes more efficient use of the increased
Y information.
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Mol

\' . 2. As the imbalance between the two detectors increases the performance |
,_3-: improves. If th.e.sign'al-to-noise ratio of one of the detef:to_rs goes 10 zero then

P the system decision is that of the other.detector. 'Thxs is equivalent to the

's::: performance of a CD system of the same signal-to-noise ratio.

i' The case of conditionally independent observations has been considered by

‘..-'_: many authors. Sarma and Rao [7] extended Tenney and Sandell’s results to the case of

:35‘{ three sensors. They assumed a majority logic fusion rule and evaluated the threshold

:\ settings for some specific cases. Chair and Varshney (8] considered the problem of

»."‘ optimal fusion of N local decisions from prespecified local decision rules. Their

':j::-' optimum fusion structure is a weighted sum of local decisions according to their }
:::is reliabilities. Reibman and Nolte [9] optimize both local decision rules and the fusion

b rule under the assumption of identical local decision rules. The global decision is then k

out of N. They optimize the local decision rule for each k k=1,2,...,N, then pick the

=~ N

l"-
0 o

value of k corresponding to the minimum decision cost.

o

"- A sub-class of the DD problem with fusion, that will be referrd to as the
E_ “Second Opinion” problem, is the fusion of one’s observation with another’s decisions.
2. An example of this is the second opinion in a medical examination, or even asking for
:'-::_'.t legal advise. Ekchian [10] and Ekchian and Tenney [l1] consider some specific
E:Z;:' topologies of this problem. Each decision maker has to make his decision based on his
own observation and a predecessor’s decisions. All the decision rules are likelihood
‘ : ratio tests using the actual data. The thresholds are determined by incoming
'*:": communication messages. The number of thresholds at each decision maker grows
-“ exponentially with the number of message inputs. Their results suggest putting the
.':': noisy sensor “up stream” in the detection network.

“ Papastavrou and Athans (12} also consider the second opinion problem.Theyv
ril examine the structure of a primary decision maker, PDM, and a secondary decision
-Ei maker, SDM ( a consultant ). The PDM makes his decision based on his own
4 observation if it is of good quality. If his observation is noisy, the PDM asks, at a
: communication cost, the opinion of the SDM. Being activated by the request of the
H PDM, the SDM sends his decision to the PDM or ignores the request if his
] observation is noisy. In cither case the PDM has to make a final decision. Again the
Pl thresholds are coupled. The threshold of the PDM is determined by the message of the
- SDM.

L This thesis is motivated mainly by three of the above works namely;

1. Bavesian formulation of the DD problem by Tenney and Sandell [3].




Extension of the DD problem to the Distributed Detection Networks by
Ekchian. [10]

3. Extention of the DD problem to the case of correlated sensor observations by
Lauer and Sandell [4].

C. THE COMPLEXITY OF THE DD PROBLEM

We saw that the DD problem can be solved optimally for conditionally
independent sensor observations. If this condition does not hold local decisions are not
likelihood ratio tests with constant thresholds. Tenney and Sandell show that for
conditionally dependent observations, local decision rules are likelihood ratio tests but
with data dependent thresholds (see e.g. (1.23 ) and (1.24 )). These two equations are
coupled. This means that the observation of one sensor is necessary for the other
sensor’s decision, which contradicts the principle of decentralization. In terms of the
terminology of the Theory of Combinatorial Complexity [13], Tsitisiklis and Athans
[14] show that

The DD problem with independent observations is a polynomial time problem.

2. The DD problem with dependent sensor observations in its simplest form is a
nondeterministic polyvnomial NP-complete. This means that exhaustive
enumeration is necessary to find the optimum local decision rules. Optimality
may be an illusive goal. So, suboptimal solutions must be sought.

A suboptimal solution to the problem for the case of AND fusion was considered
bv Lauer and Sandell {4]. They considered the case of known signals in correlated
noise They took as a suboptimal solution local decision rules which are likelthood
tests but having constant, not data dependent, thresholds satisfving the necessary

condition of optimality. These thresholds are given by the implicit equations:

Pr(F, T, )

A= ¢ Pr(D, T,)

(1.30)
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y 5 D. CONTRIBUTIONS OF THIS THESIS

..,ﬁ. We have reviewed the complexity of the DD problem and its current status. The
"\,,\ research reported here has significantly advanced this status in several important ways.
"'f v, Specifically the contributions of this thesis have been to :

1. Answer the question of the optimum fusion rule at the fusion center for the
case of two sensors.

Z

P

v j:'.‘ 2. Specify the exact relation between the performance of the optimum fusion rule
: :: and the correlation coefficient between sensor observations.

! ' 3. Solve the the second opinion decision problem.

4. Solve the multi-level DD problem with fusion; i.e. detection with quantized
v sensor data for the known signal in noise case.

q:j 5. Introduce the minimum risk quantizer.

( 6. Grade the road between DD detection and CD detection.

‘ :::. 7. Optimally design quantizers for minimum mean square estimation.

l-" 8. Present an efficient procedure to calculate parameters of a large variety of
{ quantizers.

_,.,:“ E. ORGANIZATION OF THE THESIS

j:l:‘: The thesis is organized as follows. In Chapter Il we consider the problem of
fusion in DD. Optimum detection with quantized sensor data is considered in Chapter
: \ I11, where the Quantized Detection algorithm, QD, is introduced. Numerical examples
S to illustrate the algorithm are given in Chapter IV. Generalization to the case of vector
:: observations is presented in Chapter V. Optimum reg=.ieration of sensor observations
::E: from their quantized versions and another sensor observation is considered in Chapter
oep VI. A summary of the thesis, conclusions and suggestions for future research are given

GO

in Chapter VII. Proofs to some equations and FORTRAN programs to calculate

parameters of the minimum risk and the minimum distortion quantizers are given in

<
o

]
P

the appendices.
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II. OPTIMUM FUSION OF LOCAL DECISIONS

In this chapter the important question of the optimum fusion rule will be
answered. The relationship of the optimum fusion policy to the ratio of costs and the ‘

correlation coefficient between observations is determined. \

A. INTRODUCTION
Distributed Detection with fusion is a two level optimization problem. The 1
problem can be formulated in the following three ways:
1. Local Decision Optimization
The first way is to select the fusion rule apriori and optimize the local decision
rules accordingly. Setting the activity of the fusion center as AND fusion, Tenney and
Sandell [5] derived optimum local decision rules for a pair of spatially separated
detectors with conditionally independent observations. They prove that local decision
rules are simple likelihood ratio tests with constant thresholds. The thresholds are the
solution of a pair of coupled algebraic equations that correspond to the global
minimum of the detection cost function. They also show that for the case of correlated
observations local decision rules are likelihood ratio tests but with data dependent
thresholds. Functional solution of the threshold equations in the later case violates the
principle of decentralization. Realizing the difficulty of the problem in the case of
correlated observations, Lauer and Sandell [4] designed suboptimal local decisions for
AND fusion. Their local decision rules are likelihood ratio tests with constant

thresholds satisfyving the necessary conditions of optimality. Kovatana [13] considered

v
”

\j AXND fusion for two detectors. Fefjar [16] compared AND to OR fusion for two
,.E:'_; detectors. He claimed that OR is better than AND. Stearns [17] contradicts Fefjar’s
o results. He showed by an example that OR combining is better for higher cost of
.‘_5:2 missing the target while AND combining is better for higher cost of false alarms.

A
IR

2. Fusion Rule Optimization

In the second formulation of the problem, local decision rules are set apriori.

Optimization is carried out with respect to the fusion rules. An example of this

situation could be factory built sensors that cannot be adjusted. Assuming local
threshold settings Chair and Varshney (8] prove that for the case of conditionally
independent sensor observations, the optimum fusion rule is a likelihood ratio test that

sums local decisions weighted according to their reliability.
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R 3. Global optimization of the Local decisions and the Fusion Rule

;k: The third formulation involves optimization at both levels. Here local

decisions are optimized for every possible fusion rule. The optimum fusion rule is the
; > one that minimizes cost.
X The main issue of this chapter is the global optimization of the DD system for "
:é general correlated observations. First we will state the main results for the case of N
‘;j conditionally independent and identically distributed sensor observations. Then, the .
';!L problem of fusing two local decisions of sensors with correlated observations is
{ ,_;‘: considered.

)
:" B. GLOBAL OPTIMIZATION OF DISTRIBUTED DETECTION
:1- In CD all sensor observations are available at one central processor for detection.

- The decision rule in CD is a likelihood ratio test in the observations Y Vo ¥y It
{ declares H is true if the likelihood ratio
= A (¥¥y¥y) 2 C, (2.1)

o

v

e
»
4

DN

otherwise it will declare H0 to be true.

.

.
f A
VAT

In DD only local decisions are sent to the central processor ( fusion center). The
objective of the fusion center is to mix ( fuse ) the local decisions into a single global
decision with minimum decision cost. So given the local decisions the observation 1
space of the fusion center consists of 2V discrete points. The activity of the fusion
center is to divide this space into two decision regions Z, and Z,. The decision rule of
the fusion center is a likelihood ratio test [8.] The fusion center declares H, is true if

l"“'
L ¢

[
’
P

L~

[}

:

' D"
.
R

195

L)
s

Y

._:':-: A (U, uyug ) 2 C. (2.2)
-

'*.-‘ otherwise it will declare that Hj is true. In the special case of conditionally
)_. independent and identically distributed observations, the fusion rule is a k out of N
.-:: rule. Retbman and Nolte [9] considered this problem. Assuming the same decision rule

1S : 3 g
SN OBy

for every detector they optimize local decisions for every k, k=1,2,...,N then pick the k
with the minimum decision cost.

If sensor observaticns are not conditionally independent, there is no guarantee 1
that local decisions are simple likelithood ratio tests. The problem turns out to be NP-
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complete which needs exhaustive enumerations to find the optimum decision rules [14.]
Moreover if sensor observations are not identically distributed, there are as many as
2ZN possible fusion rules for the N sensor decisions. Any algorithm that goes through
the entire fusion list optimizing local decisions will be impractical® for N 2 6.

Our approach to avoid this exhaustive enumeration is the following:

1. We assume that local decisions are likelihood ratio tests with constant
thresholds. Again we emphasize that this assumption is valid only for
conditionally independent observations, there is no guarantee that it is correct
for correlated observations [S]. So the constant threshold likelihood ratio test is
optimum for conditionally independent observations and perhaps suboptimum
for correlated observations. However the solution tends to the optimum
solution as the correlation coefficient tends to zero [4].

Those fusion rules which agree with the CD solution will be tested. The rest of
the fusion rules will be disregarded. The meaning of this will be made clear in

to

~ the following example.
- Let us consider the case of two sensors (N =2 ) in detail. To be explicit,
N consider detection of known signals in gaussian noise. The sensor observations are
‘o given by:
o
B

I3
SR H. - o —12 n 3)
:" 0" “i o 1= L (2
.-.;:

and
o Hi: y,=a+n, i=1L2 (2.4)
The a’s are positive constants and ¥ = (n, nzl‘ i1s vector of zero mean with

- covariance

o
N
[ . I p
L K = (2.5)
.. Pl
_;-L-:» where p is given by
AN

--"”

h )

o p=E{nn,} (2.6)
o A computer that spends 1 W second in every optimization process, will spend
,_"u. 40000 vears to determine the optimum fusion rule, for N = 6.
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The threshold equation of the CD problem is given by [6],
(a1 P a2 )yl +(az -p al )y2 =(312 +322 '2p al 32)4'2+(1-P2 )log(C) (2-7)

which is a straight line in the y, y, plane. Figure 2.1 shows decision rules based only
on D, only on D,, both decision rules together, and the decision rule of CD.

The global optimization requires optimizing local decision rules for every fusion
rule then picking the fusion rule with minimum average cost. The observation space of
the fusion center consists of four discrete points (0,0), (0,1), (1,0), (1,1). Any fusion
rule divides this space into two decision regions Z, and Z,. There are 2* =16 methods
to subdivide four points into two groups. Table 1 contains a list of those fusion rules.
Some special cases for the detection problem are as follows.

I 1f C;y = <, ie. the cost of missing the target is extremely high, the CD
solution assigns all the observation space to Z;. The fusion center can perform
the same. This is fusion rule one.

2. Similarly if C5; = 90, the fusion center will always decide H, this is fusion rule
two.

3. Ifa, = p a, the CD will decide based only on y,. So will the fusion center.
This is fusion rule three. This can only happen when a; 2 a,.

4. Ifa; = p a,, the CD will decide based on y,. This is fusion rule four. This can
only happen when a, 2 a,.

The first two situations represent extreme conditions of C. The next two conditions
deal with specific values of p. We also distinguish the following two cases.
Case a
-l £ p = min( ay ,a, Y max( a; ,a, )
In this case the y, and vy, intersections of the threshold equation (2.7 ) are of the same
sign.
Case b
mun( ay ,a, Y max( a; ,a, y<p=<1

In this case the y, and v, intersections of the threshold equation are of different signs.
We shall consider these intervals of p when we study the effect of correlation between
sensor observations.

The CD threshold in the y; v, plane suggests assigning the decision point (0.0) to
Zy and (1,1) to Z,. The fusion rules from 5 to 14 do not do this. They either assign

(0,0) to Z, or assign (1,1} to Z; or assign (0,0) and (1,1) to the same decision region.
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We will not consider these ten fusion rules further. The remaining two decision rules
are the AND fusion and the OR fusion. Let us now consider optimizing each of
them.
1. # AND ’ Fusion
In AND fusion u is given by:

u, = u u,. (2.8)
The individual rules are given by assigning y, to Z if
v, 2T, =L (2.9)

Otherwise they assign it to Zj.
The probability of detection P,(AND) and probability of false alarm P{AND)

of the fusion center are given by:

20 20
P (AND)= [_ f_ fy.v,/H,)dy, dy, (2.10)
Tl Tz
and
) W 0
Pf(A.\D)=jT jT fR¥,v, 'Hy ) dy, dy, (211
1 2

It has been shown in Chapter [ that, to within positive multiplicative and

additive constants, the average decision cost is given bv
R=1+CP-P, (2.12)

Substituting for Pd and Pf in (2.12) from (2.10) and (2.11) expresses R(AND) as a

function of T, and T,. The necessary conditions for optimality are
ORJT =0anddR3IT, =0, (2.13)

which can be written in the forms:
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T

o &) Q0
C sz Ty, /Hy) dy, = 5r2 RT,.y, /H, ) dy, (2.14)
and
0 : o0
C jTl Ry, T, Hp) dy, = jrx fly,, T, /H, ) dy,. (2.15)

Applyving Bayes rule and rearranging terms, one can write (2.14) and (2.15) as follows:

20
JT, fly,' T, \Hp) dy,

AT = C— (2.16)

IT Ry, T H) dy,

-
-

and

w .
jT iy, T, Hy) dy,
A, (Ty=C { . (2.17)
'[Tx fy, T, Hp) dy,

To insure minima the Hessian matrix of R with respect to T, and T,

(2.18)

{62 ROT? @*ROT 3T,
H = , , 2.19
#RIT,0T, & RIT, @

must be positive definite. Optimum threshold settings T, and T, are the solution of
(2.16) and (2.17) that corresponds to the global minima, so all possible solutions of
(2.16) and (2.17) must be tried. The coupling between (2.16) and (2.17) to determune
the thresholds represents the cooperation that can occur between the two local

detectors to minimize the overall decision cost.

gt
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2. ‘OR’ Fusion
The decision of the OR fusion is given by

u, = u; +u,-u u, (2.20)

The probability of detection P, (OR) and probability of false alarm P, (OR) are given
by

P,(OR)=1- ;]_l‘ ;1_2 fy,y, (Hy ) dy; dy, 2.21)
and
T
= 1 2 A .
P, (OR)=1- j_ao jio fly,,¥, ‘'Hy ) dy, dy, (2.22)

while the necessary conditiors for optimality are

oo fyTy Hg)dy,
A (T1 )=C (2.23)
f(YZ/Tl ’Hl) dYZ

and

1 ) .

f fly,'T, JHg) dy

A(T)=C . (2.24)
1 , .

Again the Hessian matrix must be positive definite.
3. Solution of the Nonlinear Threshold Equations
The pair of coupled equations (2.16), (2.17) for the AND fusion and (2.23)
and (2.24) for the OR fusion can be solved using Max's technique {I18]. The technique
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is summarized as follow: pick a value of T, and calculate T, from (2.16) or (2.23 ). If
the calculated value of T2 does not agree with that value calculated from (2.17) or
(2.24) then T; must be chosen again. This approach is time consuming. Another
approach is the method of successive substitution [19]. We first put the two equations
in the form

“(T ) T, ) (2.25)

T = KT ,

g+ 1 To 7 P Ty

then start with a reasonable guess for ('I'1 )o and (T2 )0. A suitable initial guess is the
locally optimum solutions, i.e. the thresholds that would optimize the detection if each
sensor works alone. These will be denoted by T,,  and T, . For known signals in

ilo
gaussian noise these are

(T )g =a; 2 +log(C).a;. (2.26)

<. Numerical Results
We have solved the threshoid equations for both fusion rules for a; =1.7 and
a,= 2.3 for several values of p und C.
To compare AND and OR fusion, define K as the ratio of the AND cost to
the OR cost.

I + CP,{AND)- P, (AND)
I + C P (OR)- P, (OR)

We have also computed the Receiver Operating Characteristic* (ROC) curves of
classical communication theorv [20] for each fusion rule.

Figure 2.2 shows the rauo K as a function of C for p = 0, 0.2, 0.4. The

figure shows that AND fusion is optimum for C 2 1 and OR fusion is optimum for
lower values of C. The same is clear from Figure 2.3; ROC curves of AND fusion are

above those of OR fusion for C 2 1 and lower otherwise. The performance difference

‘ becomes smaller as the correlation coefficient increases. Also the figures show that the
{f performance degrades for both fusion rules as p tends to one. This is in sharp contrast
AT to CD which has perfect detection for p=1.

:

4Pd as a function of Pr
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The same effects can be concluded from Figure 2.4 and Figure 2.5. Figure 2.4
shows the ratio K as a function of C for a;=1and a, =2 and for p = 0, 0.25, 0.5.

Figure 2.5 shows the ROC curves for both fusion rules for the same case. The figure
shows that AND fusion is optimum for C 2 1 and OR fusion is optimum for lower
values of C.

C. THE EFFECT OF CORRELATION BETWEEN SENSOR OBSERVATIONS
So far we have answered the question of the optimum fusion rule. For C 2 1

AND fusion is optimum. Let us now examine the effect of the correlation coefficient p

on the performance of AND fusion for C 2 1 (its range of superiority). We assume

without loss of generality that a, is greater than a;. The two necessary conditions for

I
opumality of AND fusion are (2.16) and (2.17). For the problem of known signal in

gaussian noise these can be written as:

T,pT
erfc {—/'/—:)——ZIT}
A (T)=C AALEL (2.28)

T, -a, p (T, -
erfc “2/12“21&‘)
~ (1-p%)

and
T, pT
Ay (T,) = C MRLEL . (2.29)
“ T,-a;-p(T, -a, )}
erfc ——=
7 ()

Notice that C appears only as a multiplicative constant in the two equations. The role
of p is not that obvious. Examuining the two equations leads to the following insights
about the role of p:

I. T, =-©and T, =T,, is a solution. This corresponds to the decision rule of
D,.
2. T, =-® and T; =T,,, is a solution. This corresponds to the decision rule of
. D,.
N 3. Ifa, is greater than a; we expect the performance of D, alone to be better than
2 that of D, alone and that of the selfish decision rule in which each detector tries
S to munimuze its own detection cost, not the system decision cost, by using T
r. T,
2lo’
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e We now prove three lemmas concerning these equations.
Lo 1. Lemma 1.

Y
. - I
o Forp = a /a,,
¥ -\_1-- <
( Tl - Tllo

ne and

- <

:,:_-, T2 - T2lo
o where T, is the optimum threshold of the ith detector operating alone.
vt Proof:

)

. Since the argument of the complement of the error function in each
~. . . . .
Y denominator is less than the argument in the corresponding numerator, the
:;'.}: fraction is always less than one. This implies that
A%
v ~ 1= b
oy A(T) s Cii=12

[ TR

2. Lemma?2

o For p =a, /a,, the only possible solution of (2.28) and (2.29) is:
b T =Ty,

}',-: and

: T, =-%

*.';:: Proof:
\J.“\ .

o For p =a, /a, equation (2.29) becomes

1.;-_

e

Ay (T,)=C =A, (T, ). (2.30)

v

B

LN R A

The corresponding value of T; is T| =-90.

[ G A

> 3. Lemma 3
¥
N For p 2 a /a, the optimum solution for T, and T, is:
At Tl =.30
__:.'_-j and
N =
Ty = Tyer
ot This means that the decision of the optimum AND fusion is that of DZ'
el Proof:
g
o Recall that the CD threshold line divides the observation space into two
:.- decision regions. For positive signals the following inequality is satisfied in the
O region to the right of the CD line:
g
[}
i Cfly, v, Hy )< fly, v, 'Hp ) (2.31) ‘
\'-
e
3 <
42
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" The converse of this inequality is true in the left region. The decision region Z;
of any other decision rule contains areas from the right and from the left of the
CD line. Areas to the right will have a negative contribution to the decision
cost while areas to the left will have positive contributions. Now assume that T

1 and T, , where both are finite, satisfy the necessary condition (2.28) and (2.29).
. We shall prove that they cannot correspond to the optimum solution. The
. finite point { T, ,T, ) either lies to the left or to the right of the CD threshold

line as shown in Figure 2.6 a and b respectively. In Figure 2.6 a the intersection
- of the CD line with the line v, = T, is a better solution since it excludes an
‘ area in which C f'('vl ) H ) 1s greater than f'(v ' ¥y /Hl ). A better solution
than this has the same T but with T; = - smce the added area has negative
A contribution to the cost. In Figure 2. 6 b, T, =-% and T', is a better solution
C than '1'1 and T2. since the added area has a negative contribution to the cost.
In both cases T, =- is the optimum solution and the corresponding optimum

value of T2 is TZ] o

As a result of the above three lemmas it is clear that

1.  Any solution of the necessarv conditions must satisfy

¥ <
. T, = T,,, and
K. T = Ty

2. The performance of the AND fusion saturates to that of D, alone for p 2
- a,;’a,. We might recall that the threshold line of the CD system changes slope
. at that value of p. We will refer to this value of p by p_. This result is in
contradiction with Lauer and Sandell’s results [4] which shows performance
continuing to degrade with increasing p for

{ p2op_.

Limiting behavior for = p-1.

For p =-1 the joint probability density function f(yl ¥, 'Hy } has values only on the

- line v, =-y,. So any threshold values T, and T, such that T, =-T, will produce
AND fusion with zero probability of false alarm. This can be visualized from Figure

b 2.7 . Consequently, P, will be given by

P, =0.5ert’<:{T?_-a‘.:}-O.Serfc{T2 +al}. (2.

Maximizing P, with respect to T, yields

[ 29
(9]
tJ

T, =(a, -a;)/2. (2.33)

.

o . .

. For the special case of equal SNR sensors, T,=0.

4 -
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SN
‘\' . D. NUMERICAL RESULTS

' The average decision costs vs p for a;=a,=2,and C=1 are shown in Figure 2.8.
:-_'.: Threshold values T, and T, vs p for the same case are shown in Figure 2.9. Figures
N 2.10 and 2.11 show the same for C=10.

‘_ These four figures for the case of equal signal-to-noise ratio show that the two 4
:::.' detectors cooperate with each other using the same decision rule ( equal thresholds ).
; Their threshold is an increasing function of p. The limit of this threshold as p = -1 is ;
- zero. This behavior agrees with (2.33). The limit of the threshold as p = 1is T . This

1s because for p = 1 the two systemns have identical observations.

_:_:j The detection cost curves show that the cost is an increasing function of p. The
:,‘:I: curve of the AND fusion has the same shape as the curve of the CD system. Both

’i systems attain their best performance at p=-1. They have the same worst performance

N forp= 1.

*

N Figures 2.12 and 2.13 represent the case of unequal SNR sensors for C=1.
."‘ .

}: Figures 2.14 and 2.15 show the same for C=10.
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Figure 2.9 Threshold Value for Equal SNRs.C=1.
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These four figures for the case of unbalanced sensors show that, the two
detectors cooperate using different thresholds. The threshoid of the higher signal-to-

noise detector is an increasing function of p while the other threshold is a decreasing
function of p.

The cost curves show that the fusion rule has its best performance at p =-1.
Both DD and CD have their worst performance at p= p_. For p 2 p_ the
performance of the optimum fusion rule is the same as the detector of the higher
signal-to-noise ratio. Recall that CD system has perfect detection for p = | when the
SNR’s are unequal. As C increases the average cost of each system increases. This can
be explained from the expression for R in which the probability of false alarm is
weighted by C.

E. DISCUSSION AND CONCLUSIONS

We have shown that the optimum fusion rule is determined by the ratio of costs
and the apriori probabilities. For equal error costs AND and OR fusion rules are
equivalent. This is not surprising since each system turns out to be the minimum
probability of error detector; thresholds are adjusted such that | -P;= P, It might also
be noted that the opumality of the fusion rule is independent of the correlation
coefficient and the signal-to-noise ratio in this case. We also note that the detection
cost of the nptimum fusion rule has its mimimum value at p=-1. [t has its maximum
value at p=a,’a,. The performance saturates at the cost of decision of the Jetector of
higher SNR. In the interval (p € [a; /a,1]), the optumum fusion rule ignores the
decision of the detector of lower SNR. As a good dynamical example that agrees with
this result is the switched diversity combiner [21] in fading environments and its
centralized counterpart, the maximum ratio diversity combiner [22]. Recall that for
unequal SNRs the performance of the CD svstem improves in this interval and has
perfect detection for p =1. Also it is important to note that the optumum thresholds
of the individual obscrvers are not the same as if they were operating independently,
but must be determuned by simultancous sclution of two coupled nonlinear equations.
This represents the cooperation between the two detectors to work as a team. Lastly
the performance difference between CD and DD is due to the information loss in local
data processing. F.owever DD has fewer requirements on the communication channel

in contrast to CD which requires infinite bandwidth. A compromuse between these two

extremes 1s to allow more information than just decisions to be sent to the fusion
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center. This is the concept behind the Quantized Detection algorithm considered in the
i‘{-{ following two chapters.
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III. DETECTION USING QUANTIZED SENSOR OBSERVATIONS

A.  INTRODUCTION

So far detection with sensor observations has been described using twe methods.
In the first method all sensor observations are sent to some central processor which
makes a decision based on a likelihood ratio test. In the second method only local
decisions are sent to the central processor which fuses these decisions into a global
decision. While the first method is very easy to design it requires in principle infinite
bandwidth communication channels. The second method requires only one information
bit per detection. Detection with quantized sensor observations will be introduced in
this chapter. The main goal of the chapter is to grade the road from the DD problem
to the CD problem. It will be referred  to by Quantized Detection. QD. The
performance improvement of the DD problem will be traced as the amount of
information delivered to the fusion center increases.

First let us consider the problem of the Primary Decision Maker (PDM) and its
quantized second opinion (consultant). We will prove three theorems concerning the
decision rule of the PDM. Then fusion of two quantized observations of an arbitrary
number of levels will be considered. As a special case, fusion of two sensor
observations, one quantized to N levels and the other to N+ 1 levels, will be proven
equivalent to the PDM and an N-level quantizer. Comparison between different

configurations will follow.

B. TEAM DECISION OF A PRIMARY DECISION MAKER AND A SECOND
OPINION QUANTIZER.

1. Formulation of the PDM Problem
Consider the structure of Figure 3.1 in which ¥, is quantized into ¥iq by the

quantization rule @ of N\ levels.
a: Y, -»qu. (3.1)

The primary decision maker will make his decision u_, about the phenomena H based

on its own obscrvation v, and the quantized observation Vg

wn
~1




PHENOMENA

yl y2
v
1
Q1 yia POM uo
o —
Figure 3.1 Configuration A, The Primaryv Decision

Maker and its Quantized Consuitant.
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The problem of the PDM is
1. to design the quantization rule a i.e. to specify the set of N points
-°0=X1$X25...5XN<°°
that defines the quantizer intervals, and
2. to design the decision rule Y,

YZ:qusz-)(O,l) (3.2)

in order to minimize the decision cost.
2. Problem Analysis

Our approach is as follows. We first design the optimum Baves decision rule
given a set of quantizer parameters. Next, the average cost is expressed as a function of
these parameters. We then minimize the average cost with respect to them.

a. The Optimum PDM Given Some Quantization Rule a

We have shown in Chapter [ that, to within an additive and a

multiplicative positive constant the average cost is given by [6]

R=CP.-P, (3.3)

where C is the ratio of error costs and P, and P, are the probability of false alarm and
probability of detection respectively. The PDM receives a quantized level Vig = Qj .
He will make his decision on the basis of his own observation ¥, and Viq The
performance of the the primary decision maker, given some quantization rule a, is
given by the following lemma.

Lemma 3.1

The probability of detection and probability of false alarm of the Primary Decision
Maker are given by:

<
P, = } i+l v,,Y, ‘H) ) dy, dy 3.4
d Q sgzezlﬂ("h 1) 4y 4y, (3-4)

and

59

W

ww

Twwvew




o
P

) .\.. P, = jxi”j fly,.y, /H, ) dv, dy, (3.5)
‘-‘-‘ where Zli is the decision region Z, given that yle[Xj,Xj+ -

. Proof:

:~}_:tj The proof'is given in Appendix (A).

:"\‘_' The decision rule of the Primary Decision Maker is given by Theorem 3.1.

a Theorem 3.1

\

g Given Yiq and y, the decision rule of the Primary Decision Maker of Figure 3.1 is

»:::jf‘ 1. deterministic

! A

PRl
g,. *,2:quxY2—»(0,l) (3.6)

b
o

‘*-‘ 2. alikelihood ratio test

®

N S

s i (v

N \: 0 = 1 if A (Y2) = OJ(}z) ]=1’2 N (3 7)

g ° 0 ifA(y,) < O(y,) oo
Kk
) . where A (v, )=y, 'H| ).y, Hy)
lj 3. the threshold function Oj (v, ) is given by
. X ;
[\ ..'w X '
i .f\(J My, v, Hy) dy, |
x O, (yv,) = ch+ j=12..N. (3.8)
::::::5 .[Xj lﬂ}‘]«'yszl) d}'l

o

o

ol Proof

I
a
[

P
»

We first insert (3.4) and (3.5) into (3.3). Each term of the detection cost (3.3) is then

re
v
e .
'y

a
14

given by

. vl
?’;h?
- Taga)

X, q
ZUI X; T ¢ ﬂyl’yz;k% )-Hyl’y2 Fh )]dydeQ (3.9)

N 'r_.'.
s

-~

To make Rj in (3.9 ) negative an optimum decision rule assigns v, to Z if

te
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X. , . .
C L(‘*k.vl v, /Hg ) dy, - ))fé” fly, 2wy /Hy)dy, 2 0 j=12,..N (3.10)
A i

otherwise it will assign y, to Z; .

Applying Bayes rule and rearranging terms, decision rule (3.10) can be
written as

>
Iy Ry, vaHy) dy,
Afyy) 2 C—=l 3= 1,2\ (3.11)

§ ‘{] * lf(5’1"3’2'“1) dy,
]

which completes the proof.

b. Optimum Quantization of Y |

According to Theorem 3.1-, the decision rule of the PDM is a likelihood
ratio test with data dependent threshold. The threshold depends on the choice of Xi's.
To find an optimum solution for the Xj ‘s is not any easier than that of the DD
problem. Recall that for the DD problem optimum solutions are possible only for the
case of conditionally independent observations. Only suboptimal solutions are possible
for the case of correlated observations. We will not expect more for the QD problem.
Let us consider each case separately.

3. Conditionally Independent Observations

Under the assumption of conditionally independent observations, 1.e.
fly v, H) = iy,  H) (3.12)

the decision rule of the Primary Decision Maker can be simplified. This decision rule ts
given by the following corollary of Theorem 3.1.

Corollary 1

Assumung conditionally independent sensor observations, and given ¥iq and v,, the
decision rule of the Primary Decision Maker of Figure 3.1 is

1. deterministic

1Y XYy = (0, 1) (3.13)
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2. a likelihood ratio test

if A 2 0.
u ={ 1 (v,) i j=12,..N (3.14)

0 0 fA(y,) < O,

where A (v, )=fly, /H; )/fly,/Hy)
3. the threshold Oj 1s given by

RGN, S -

X,
"-Xf.* lf(yl/Ho) dy,
© =C i J=12..N. (3.15)
| iy ) dy
Ixj v/ H) dy,

a8 Gy

. -y

~
‘ Proof

> Bv applying condition (3.12) in the threshold equation (3.8 ) one obtains (3.15) which
completes the proof.
- Let us denote the conditional probability of detection and the conditional
probability of false alarm of the PDM given that the j, quantization level of v, is
{ rcceived by de and Pr,' Let ‘Pj be the set of all points y, for which

> Ay (y,) 2 O, (3.16)
f Then de and Prl can be written as
Lo ,
- Py = j‘l’. Ry, Hy ) dy, (3.17)
i
and
Pp=] p v Hg)dy, (3.18)
j

Equations (3.4) and (3.5) are now given by
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4 X.
Py =3 [ Ry ) ay, S My M) d, (3.19)
i j
and
X,
) f " o) 1, [T ) 0, (3.20)

Substituting (3.19) and (3.20) in (3.3), then differentiating R with respect to Xj

J{j=2,3,..N} will yield necessary conditions for optimality of the set of N equations.

C 1 1y ¥ Ho )y, '[ykf}Xk ¥y Hy )dy, |-

k
[f.p (X, v, H) )dy, -IP (X, vy Hpdy, =0 k=23...\. (3.21)
k k-l
Applving Baves rule and rearranging terms, (3.21 ) can be written in the following way.
j\{; f(}'Z’VHO) dyl ) J- v r(yZ" HO) dyZ
A (X )=C—%— kel k=23,..N (3.22)
j‘l’ fiy, Hy) dy, - j‘l’ fiyp Hy) dy,
k k-1
The set of N-1 necessary conditions (3.22) are general for any statistics of y, . For the
special case when .\ (v, ) is monotonic in ¥, , let 'I'j be the value of v, for which
Oj =A, (T}) J=1,2.....\. (3.23)
So Tj Is given by
X,
J.Xj. fly) Ho) dy,
A (Tj )= C ‘<1 J=12,..N (3.29)
f\'h fly, H)) dy,
i
63
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(Y%
(%
L J For this case of monotonic A (¥, ) the set of necessary conditions for optimality (3.22)
: can be written as
~
e
\h
) O TR
{ '(T fly,Hg) dy, - § Tsz'HO) dyv, )
o A (X, )=C—k - k=23,.N 25
" ./ li .
.:\ j.r Hylel) dyz'j‘.r f(ylel) d}z
:."' k k-l ~
% .
s
_‘ . Equivalently we can write (3.25) in the form
= T,
-3 § Tk 'y, Hy) dy,
( AX )=C Tk k=23,..N. (3.26)
2 f—rk'layz"Hﬂ dy,
k
J.a. P, and ?, in this case are given by
:_:Z X Q0
P, = }' v H, ) dy v, ‘H, )dv 3.27 1
"\
( .
K and
N
o
o v X 20
T Py ﬂ; L( iy, Hy ) dy, "T fly, 'Hy) dy, (3.28)
®) N i
s
-t Equations (3.24) and (3.26) are only necessary conditions for optimality for
::::: monotonic likelihood ratio. They correspond to minima if the Hessian matrix
:‘ [.azR,axiax}.} 1s positive definite. All solutions must be checked for the global minima.
': 4. Solution of the Primary Decision Maker Problem with Independent Sensor
:::j Observations and Monotonic Likelihood Ratio
Y The following theorem summarizes the above solution of the PDM with
." independent sensor observations and monotonic likelihood ratio.
¥ ." P
) ',.a
» ]
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Theorem 3.2
The decision rule of the Primary Decision Maker with a Quantized Consultant (for
independent sensor observations and monotonic likelihood ratio) is;

1. determunistic
yzzqusz—»(O,l) (3.29)

2. a likelihood ratio test

y = 1 1fA( y 2 Oj P=12..N (3.30)
o 0 ifA (‘ ) < O idaenigs 3

where A (}'2 )= “}'2 “Hl ),’f()’z, Hg )

the threshold function O (y, ) is given by

(oY)

X.
J.\,-” 'y, Hy) dy)
© =C | j=12,..N. (3.31)
’ [Nty ) ay
x] -1 1) -1

The optimum set of quantizer interval end points must satisfv the set (3.26 ), where
T, 's are given by (3.24). All possible solutions must be checked for the global
minimum cost.
5. The Case of Correlated Observations

We now move to a more realistic situation by removing the condition of
independent sensor observations. In many radur and sonar problems noise in nearby
sensors 1s likely to be correlated. As we mentioned before the decision rules (3.11) are
likelihood ratio tests with data dependent thresholds. It is impossible to come with
their optimum functional expressions [4.] A suboptimal solution for the case of
correlated observations is to use likelihood ratio tests with constant thresholds as local
decision rules. These coastant thresholds for v, are the values of ¥, for which the

v

inequality (3.11 ) is an equality. t.e
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X
k+lge
L( Ry, Ty.Hg) dy,

AT, )=C ;(k k=12,.,N . (3.32)
“k+1 / ,
“*k

In terins of these thresholds T, ‘s and the quantizer points X, ’s one can write

expressions fcr the probability of detection and the probability of false alarm in the -
form of (3.4) and (3.5). Substituting for P, and P in (3.3) and differentiating R with

respect to X, for k=2,3,..N yields the following set of necessary conditions for the

case of monotonic A, (¥, ) :

T
ka'lf(Yz"kaHo) dv,
AX,)=C=£ k=273,..N. (
k T
k-lge v .
ka Ty, N Hy) dyy

(¥}
(2]
(U]
—

The set of equations in (3.32) and (3.33) constitute 2N-1 equations that specify the
quantizer interval end points (X, } for ¥, and the thresholds {Ty) fory,.

C. TEAM DECISION OF TWO QUANTIZERS AND A FUSION CENTER
In this section we will consider the problem of making a giobal decision based on .
two quantized observations.
1. Formulation of the QD problem
For the structure of Figure 3.2, ¥, s quantized into N levels by the

quantization rule @,

-
—
=~
—
L
—_—
LI
L7 ]
j 8N
-—

and v, is quantized into M levels by the quantization rule a,
a,: Y, = Y,q . (3.35
The quantized values ¥iq and v, are sent to the fusion center which must decide which

state of the phenomena is true. It is required to design the quantization rules «, and
«. and the decision rule

66




PP AL

L;l“ L el

to munimuze the global cost.
2. Problem Analysis and the QD Algorithm

The observation space of the fusion center contains NM points to be divided
into two decision regions. Since there are as many as 2 M fusion methods, checking all
of them will consume a very long time even for small values of N and M. A suboptimal
solution is to approximate the threshold equation of the corresponding CD problem by
a piecewise curve in the v; v, plane. This is illustrated in Figure 3.3.

The figure shows a schematic diagram of a CD threshold curve and its
staircase approximation. The approximate curve consists of segments of straight lines
connected together. The coordinates of the connecting points will play the role of the
interval end points of the quantizers. Let us first write an expression for P, and P, in
terms of these point coordinates. If this expression of the cost is minimized with
respect to each coordinate there will be as many equations as the number of
coordinates. Solving these equations simultaneously vields the quantizer parameters.
This is the core of the QD algorithm which is summarized as follows:

1. Derive the threshold equation of the CD system.

Ay vy =C (

(93]
(O¥)
=1
~

l .

rJ

Approximate the threshold equation by a stepwise curve satisfving the N and M
constraints.

(%]

Write an expression for the cost in terms of the curve parameters.
4. Mininmuze the average cost with respect to the curve parameters.
Let us illustrate how the algorithm works for the case of detection of a known
signal in gaussian noise.
3. An Example: The Known Signal in Gaussian Noise

Consider Figure 3.2 when v, and v, are given by

—re
—
e
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where the a's are positive constants and ¥ = [n, n, J' is a gaussian random vector of
Zero vector mean with covariance matrix:

~
]

3.39
o 1 (3.39)

It is required to design the N-level and the M-level quantizers Q, and Q,
and the decision rule ¥ where

1Y X Yoo = (01) (3.40)

to munimize the average decision cost.
Procedure following the QD algorithm

The threshold equation of the CD problem has been shown in Chapter I to have the
form:

(a; -p a, )y, +(a, +pa; )y, =(al2 +322 -paa, )/2+(l-p2 HNog(C). (3.41)

. The CD curve is a straight line in the ¥, v, plane.

ro

Possible stepwise approximations for the threshold equation are shown in
Figure 3.4 . We notice that in Figure 3.4 a and ¢ the two quantizers have the
same number of quantizer levels. While in Figure 3.4 b and d one quantizer has
one more level than the other. From Chapter II, we can expect that the
constant C will decide the superiority of a or ¢ and of b or d. We shall
consider optimum parameters of Figure 3.4 a and b. Similar treatment can be
considered for Figure 3.4 ¢ and d. In Figure 3.4 a the point X; =-%0 while T,
ts finite. In Figure 3.4 b X, =-0 and T; = .

(V¥ ]

The probability of detection of the decision rule of Figure 3.4 a is given by

S .
P4 =1=§I r‘{l ir,ﬂyl'yz /Hy) dy, dy, (3.42)
1 i

4

and P, 1s given by

Pr = > '(,‘;.H | ~[r f(ypy; Hy ) dy; dvy . (3:43)
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For the detection rule of Figure 3.4 b P, is given by :

N . o0
Py =._§; JXXf“ § Ry 1Hy ) dyy 4y (3.44)
1 1

and P, is given by

£ =

X
P =3 B "I s ) a5y & (3.45)

4. Necessarv conditions for optimality of parameters of the curve in Figure 3.4 a

are.
X
'[Xf+ fy) TuHy) dy
AT = C i=12,N (3.46)
J o7y, TH dyy
X
and
T.
'1 f v
‘[T.l fly,/X,,Hy) dy,
Acx) = €= i=23,.N (3.47)

1 )
J.Tl fly, X, H)) dy,

i

For Figure 3.4 b ,the optimality conditions are

A(T,) = C— i=23,..N (3.48)

and
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o T
. 4 1-
oY § T. 'y, X Hy) dy,
19N : .
O AX)=C— i=23,.,N. (3.49)
L § Ry, XH) dy,
T.
{ { i
i
oo The last two equations are exactly the same as the necessary conditions for
B optimizing detection using a Primary Decision Maker and its quantized second opinion

for the same signals in gaussian noise. Recall that the information available at the
PDM is more complete than that available at the fusion center of two quantized
observations. Yet the two problems have the same solution. This is a proof of the
following lemma.
Lemma 3.2

Optimum detection of known signal in gaussian noise using two quantized observations
of N and N+1 levels is equivalent to optimum detection using the first quantized
observation and the second continuous observation.

Lemma 3.2 is applicable to any case with a monotonic likelihood ratio. This can be

: easily proved by writing the necessary conditions of optimality for the two
o configurations. A special case of Lemma 3.2 is that of N = 2. It corresponds to the

tandem configuration of two detectors in a Distributed Detection Network (DDN) [10].

" A The “downstream” detector (decision maker) makes its decision based on its own
EZ::;Z, observation and the “upstream” detector’s decision.
s
; Ej,'-_: D. NUMERICAL SOLUTION FOR THE SYSTEM PARAMETERS
D,

O [t is of interest to compare the four sets of equations {(3.24 ),(3.26)},
- {(3.32).(3.33)}, {(3.46 ),(3.47)} and {(3.48),(3.49)} with that of Llovd and Max [18,23] for

minimum distortion quantizer parameters.

Max's trial and error algorithm to solve this set of nonlinear equations can be

used. However Max's algorithm is very time consuming [24]. We have used instead

,‘_fj:';fj the method of successive substitutions with an initial guess satisfving
X, Xy =...5X (3.50)
- and put the equations in the form
o Z=G(Z) (3-31)
.
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The kth iteration is then given by

Z,=G(Z,) (3.52)

We will devote the next chapter to solving some numerical examples using this method.

E. SUMMARY

In this chapter the method of detection using quantized sensor observations has
been introduced. This method, referred to by QD, can have significant performance
improvement compared to the distributed detection algorithm (DD) with only
marginally more demand on the communication channels. The QD algorithm involves
approximating the CD threshold hyperplane by a stepwise hyperplane that can be
spanned with the quantized data and that munimizes the detection cost.

Also the equivalence between two detection configurations, one with tandem

connection and the other with hierarchical structure, has been shown.
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IV. NUMERICAL RESULTS

In this Chapter some examples are solved numerically using the QD algorithm.
First the detection of known signals in gaussian noise is considered. Next detection of
signals with exponential distribution is considered. Finally, the algorithm will be

applied to differentiating between gaussian signals with different variances.

A. KNOWN SIGNAL IN GAUSSIAN NOISE
Again consider Figure 3.2 when y, and y, are given by

HO fv. = n,

“1 1
H 'y, =a +n,i=172 4.1

with a, = 4 and a, = 2. The noise vector
N=[nn,}[ (4.2)

1s of zero vector mean and with covariance matrix given by:

where p is given by
p=E{nn,}. (4.4

[t 1s required to:

1. Design the primary decision maker PDM and its N-level Quantizer to minimize
the average decision cost. We have designated this structure configuration A.

2. Design the N-level quantizers Q and Q, and the decision rule u, to minimize
the average decision cost. We have designated this structure configuration B.

3. Compare the performance of the two configurations and that of the completelv
centralized system.

Following the algorithm we have:

I.  The threshold equation for the CD problem given by,
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L) .,.1
L
L +(a, - =(a,2 +a,2-2 +(1-p? )log(C 4.5
A (al P a, )y, (az pay, (al a,” -2p a| a,)/2+(1-p* )log(C) (4.5)
o
=7
'::;Z a straight line in the y, v, plane.
S 2. Figures 3.4 a and 3.4 b show the decision regions for configuration A and
{ configuration B respectively.
3. Probablhty of detection P, and probability of false alarm Py of PDM are
given by:
\ N X 1 T -a,-p(y -a)
X P =%~ f‘(‘”—— exp(-y,%/2) erfc) K2 A S_a d 4.6
; dl i=T X, ~/ M P( yl / ) ~/(1-p2) yl ( )
“‘-\ and
0 % T -py
N Py ‘” exp(-v,2 /2) erfc k——l—} dv, . (4.7
e 5 2 P ) V (1-p?) & )
_’,« Also Py, and P, of configuration B are given by:
< LN T, -ay-p (v, -a,)
P.,= }ﬁ il exp(-v,?.2) erfc §k—2 -1 1 dv 4.8
-'-n dz 1=‘-: &1 V/ 271' p( -1 ) V/ (l_pZ) 'l ( )
X and
\h
\-
o NS T, -py
0 P, = ) ‘,”'1 exp(-v 2,‘2) erfc ——k—— dy, . (4.9)
25 £ = jxi J i J (1-p%) 1
-
. 4. For configuration A equations of the quantizer interval end points and
o corresponding PDM's thresholds for the gaussian case are given by
)

klp‘( T, -p X,
erfc NI - erfc NITE )}
A(Xk)=C P P

k=23, N (4 10)

~3:;: T,. a, X3y a, -p(X, -a,)
® erfc P ( - erfc = p, k1 }
(1-p?) v (1-p9

and
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Kye1-2) P (T2 -2 -P(T -a,)
erfc J (l-pz) } erfc{ 7 (10} }

For configuration B the quantizer end point intervals X’s and T's are given by:

AT )=C

erfc klpzk} { }
AX,)=C v (1-p) v (1-p%) k=23, N

T °a"-p(x a) -a‘)'p(x -a )
fe k-1 2 - kK "1~/
M RV } {r 7 (1p7) }

and

T, -p T,
erfe X1 P Ty } {k }
' J (1-p%) le')

T, ) =
erfe Xk+1 et -p (Tk°a$) - a -p (T -d. )
v (1-p%) (1-p7)

We have solved the system of equations of the two configurations using the

k=23

method of successive substitution for N = 2, 3, 4, 5§ and 6 . Figure 4.1 shows the
receiver operating characteristics ROC for the two configurations for p=9, for different
values of N. The ROC for the CD system is also shown. The effect of p is illustrated
in Figure 4.2. The figure shows ROC curves for Configuration A for different values of
N and for p=0 and 0.25. Figure 4.3 shows the average cost of Configuration B and
CD vs. C, for different values of N. The relation betwecn the cost of detection for
Configuration B vs. the number of quantization levels is shown in Figure 4.4 . The
figure shows the exponential decay of the detection cost as the amount of information
available at the fusion center increases.
The following results are noted {rom the curves.

I.  Configuration A has better ROC curves than Configuration B. The
performance difference is large for N = 2 but gets smaller as N increases.

)

Both performances converge to that of the CD in a uniform manner.

3. As the correlation coefTicient increases the performance ditference decreases.

-------------

wiy .

k=12, N. (4.11)

(4.12)

N (4.13)
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and

and assume that A

As N increases the average detection cost gets smaller and tends to that of the
CD. Since the number N reflects the mutual information between the input and
the output of the quantizers, the relation between the performance degradation
and information delivered to the fusion center is strong.

SIGNALS WITH EXPONENTIAL DISTRIBUTIONS

Consider again Figure 3.2. Let ¥, and ¥, have the following distributions:

Hy: flv,) = Agexp(- Ay ¥,) (4.14)
H, y;) = Apexp-hy vy, ) 1=1.2 (4.15

| is less than A, . It s required to design the quantizers and fusion

rule that munimuze the average decision cost

I

tJ

1.9

Following tke QD algorithm we have:

The CD threshold equation is given by
v, — v, =G (4.16)
where C, is given by
(hy k7 -
c,=———cC. (4.17)
"O - A'l

The CD threshold equation is a straight line in the first quadrant.
Figure 4 5 shows possible approximations of the threshold equation. For N=2,
the stmmetry suggests equal detector thresholds. For N 2 3 let us fix X, and
TN, to zero.
The probapuity of detection and probability of false alarm P, and P, are given
by

P, = } Cexpor Np-exp-h N bevper T (418

=1 ' '

and

\\




N

Pr =2 [exp(-Ag X; ) exp(-hg Xj4 ) 1 exp(-2 T))
i=1

(4.19)

Writing an expression of the average cost in P, and P, as before and minimizing
with respect to Xk k=23,..N and Tk , k=1,2,.. N-1 one obtains the set of
equations

exp{(ry - )T, } = Yoo SRt X A Xo ) o N (4.20)
Xp 0 1 K R - i , yLyens s 2
A exp(-A; X, )-exp(-A X, o)
and
3 xp(-hy T, )-exp(-h, T, .
expilhg Ay 1% )= - C NPy Ty JexpCho Tyo ) )
1

.

k=2,3,... N (4.21)
exp(-A; T, )-exp(- A Toey)

This set of equations Have been solved by the method of successive
substitutions for A,

2, }‘1 =1, and for N=2,34,5 and 6. A FORTRAN
program to calculate the quantizer parameters is given in Appendix D.

Figure 4.6 shows ROC curves for the quantized as well as the CD systems. The
average detection cost is shown in Figure 4.7.
We note the following:
The largest performance improvement occurs when we switch from N = 2to N
=2

( 1.e. only less than one more information bit per detection).
S ,A(‘

r*y

The performance curves { ROC(N) } and { R(N) } converge uniformally to the
performance of CD

C.

GAUSSIAN SIGNALS WITH DIFFERENT VARIANCE
Consider again the structure of [Figure 3.2

Let sensor observations y, and v, be
independent, identically distributed gaussian random variables of zero mean. However,
. . “~
under H,, Var(v. )=6,°,

0 ‘i 0

and

under HL. \/:xr(yi y=6,°

© =12 For specificity, let
= = ! Al
G, ] and G, =y <.

Quantized sensor observations are sent to the fusion center to dectde which of the

hvpothesis is true. [t 1s required to design the quantizers and Q. as well as the
pa 1 < 1 2
fusion rule to muinimuze the average decision cost.
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Figure 4.5 Approximation of the Threshold equation for
Different Values of N, for Expornential Signals.
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Following the QD algorithm we have:

The CD system decision rule is a likelihood ratio test. The CD detector declares
I—Il is true if

y;2 +3,% < (112)og[s? /(62 O))i(6,2 -0,2 ) (4.22)
otherwise it will declare Hy is true. The threshold equation is the circle

y.2 +y,7 = Ry? (4.23)
where Ry? is the right hand side of inequality (4.22).

Possible approximations of the CD threshold equation are shown in Figure 4.8 .

Figure 4.8 a corresponds to 3-level quantizers. The corresponding probability of
detection and probability of false alarm are given by;

P, (3)=(erf-X/o))]? (4.24)
and
P, (3)=[erfl-X. o)1 (4.25)

where y, and v, are subdivided by the points X and -X. For the 5-level
quantization approximation of Figure 4.8 b, the probability of detection and
probability of false alarm are given by

P, (3)=erflX; /6, ) {2erflX, /6, )- erf(X; /6, ) ) (4.26)
and
Pe(5)=erflX, /0,) (2erf(X, /6, ) -erfiX; /05 ) } (4.27)

where X2 , X3 ,-X3 and -X2 define the the quantization intervals of both Y,
and y, .

Inserting P; (3) and P, (3) into R in (3.3 ) and minimizing R with respect to X
gives

87
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AX) = -1 SOX /%)

6, erfiX /o))

(4.28)

Also inserting P(5) and P(5) into (3.3 ) and minimizing R with respect to X,
and X gives;

c X, /6

AX,) = c T 7%) (4.29)
o, erf(X;/0,)

A (X,) = C 6, erfiX, /0y ) - erflX; /0,) (4.30)

6, erfiX, /6 )-erfiX; /o))

Solution of these implicit equations in the quantizer parameters can be carried
out by the method of successive substitution. The FORTRAN program to calculate
them for any value of 6 and 6, is given in Appendix F.

“1gure 4.9 shows the average detection cost vs. C for 3-level and S-level
quantizer systems. Detection cost of CD is also shown. The figure shows that the
detection cost decreases dramatically using S-level quantizers in comparison to 3-level
quantizers. The cost of the CD system is only slightly lower than that of the 3-level
quantizers.

Similar procedures can be carried out for the casc of correlated observations. The CD
curve in this case is an ellipse with principle axes passing through the origin. It can be

approximated in a similar way as the circle.

D. CONCLUSION

The above examples show the uniform convergence of the Quantized Detection

Algorithm to the Centralized Detection Algorithm. The Distributed Detection

4.!.“. . ..‘ )

Algorithm is a special case of QD. It follows that Quantized Detection is an efTicient

utilization of bandlimited communication channels.
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Figure 4.8 Possible Approximation Of the Threshold Equation.
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NN V. THE CASE OF YECTOR OBSERVATIONS
!

o A. INTRODUCTION

:Z':i In the previous two chapters the QD problem for the case of scalar sensor
-_Z.: observations was solved. It is now time to extend the QD algorithm to the case where

' ) each local observation is a vector Y, . The QD algorithm can be applied as long as the

' corresponding sufficient statistic for the centralized detection problem can be divided

“:::; into local statistics to be quantized. Let us consider the gaussian case and put it in the

previous framework.

B B. QUANTIZED DETECTION WITH VECTOR OBSERVATIONS

;::'- For the structure of Figure 5.1 the observations at locations 1 and 2 are given by

£~

A~ . _ i
—‘.'- HO . £ - <& |
ij..' and \
N H L =A +8 =12 (5.1) \
{ ' Let us denote the observation vector by ¥ |
i L
s I = : (5:2)

O
I~
™~

-
A
e
S s

[

The noise vector N, given by
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B ,B,and R, are the covariance matrices of the noises at locations 1 and 2 and their
o . . « . {
common covariance matrix. The signal vector A 1s given by :

.. A
. é = ‘ (5'5)
. éz

B2
.\
.

The CD system decides that Y belongs to Z; if [6]

I

5 exp {(-1/2)[ (X-A)B'(Z-A)-ZB L]} 2C. (5.6)
v

¢ The CD threshold equation can be written in the form

o AR Y = log(C) (L2) AR A.

—
in
~d

—

Using the block matrix inversion lemma [25], (5.7 ) can be written in the form

a ¥ +B ¥, = log(C) (1) ARTA. (

«n
. oD

( In (5.8 ) a and P are given by

-

i _em -
“-"‘- "‘- "- "- “- q. ". “. .‘l .IL.‘L.-\ i
+
1> —

‘e
X

11= a ¥, (51D

and

- .’l .'- ,I L ‘-l .

%

93

e
NS

.": . I_\_.: t

N R P S PR A I - ..v_.'_,.’..._.’.'.'.’.'.
Yoyt Lo 0 it ARG AN N N ALY
N . N " t‘ R 0‘! .’.v b .' \' L8 r*,.fl ol alnNaX, N

.......................... "’ql:f

RN »

»
K% NS
R

P a0 M e )



N L= 1, (5.12)
(5.8 ) becomes
! ol
2 L+ 1, = log(O-(IDA'R™ A (5.13)
;'.-\-_. where 1| and 1, are bivariate gaussian with zero vector mean under hypothesis H; .
. . i’ . .
e Under hypothesis H, their vector mean is
F.'.
:'.._ 11 a él
= £ } (5 14)
v
LI” | Ba,
::f_::‘ Covanance of || and 1, is given by
}'::Z
s .
3_ a Bl «a p
o5 Cov{l; 1,) = (5.15)
3. .
In (5.15) p is given by
o p=aB, BV (@B a) (BB, B)']. (5.16)
.-\’:-
0 The distributed signal processing is to form local linear combinations 1, and 1, , then
__::j: quantize them as before. This processing is also shown in Figure 5.1.
r C. SUMMARY
RS
.’ In this Chapter it is shown that the QD algorithm can be extended to the case of
;I-‘-;Z sensor vector observations. An application is the case of high quality local area
e communication and lower quality long distance communications. In this case sensor
tj:::j observations in local areas are gathered at a local processor to form the local sufficient
.' statistics. Quantized local statistics are then sent to the global far away processor for
o fusion. \
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VI. OPTIMUM ESTIMATION USING QUANTIZED SENSOR
OBSERVATIONS

A. INTRODUCTION

In the previous part of this thesis there are situations in which a group of
observers make local decisions that, taken in combination determine the overall
performance of a system. The observers may or may not be interconnected. Hcewever,
even when they are, for a variety of considerations such as lmutations on
communications bandwidth, transmitter power,security, or perhaps the very nature ol
the observers themselves, only decisions may be interchanged between them and not all
the observations upon which their decisions are based [1,5,26-33].

Another case of interest concerns the encoding of high resolution measurements
for transmission between observers using a small number of bits. Here a remote
observer must decide which of N possible discrete values best represents his
observation. A second observer is to combine his local observations with the discrete
data from the first in an optimum manner. In this chapter we consider the problem of
regeneration of a remote sensor observation using its quantized representation and a
local observation. The design of the quantizer at the remote sensor location and the
optimur.a linear estimator to combine the quantized data with the local cbservation to
minimize the expected mean square estimation error will be considered. Generalization

of the results to the vector case i1s also shown.

B. THE LINEAR MINIMUM MEAN-SQUARE ESTIMATE OF Y |
Consider the structure of Figure 6.1 in which the observation v, 1s quantized
into Yiq bv a quantization rule ¥

ViV, =Y, . (6.1)

The quantized data ¥iq Is sent to sensor S, site.

The linear minimum mean square estimate of the observation ¥, from Yiq and v, 1s
shown in (Appendix F) to be
A 2. G‘ , - L
v =1 {l-popy,  +p M -p=)v, | (n-p=p-) (6.2
l “lq G <2
2
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where we have assumed that vy, and v, are random vanables with zero mean and

vanances
E{(y:, ) = o5 =12 (6.3)
and correlation
p =Ely v, )0, 0, (6.4)
The scalar quantities 1} and p are parameters of the quantizer and are given by
AN
n= (k}_“_: F‘* Q. )6,” (6.5)
and
(6.6)

N is the number of quantization levels and C, and P, are given by

X

C, =1(f \k*‘yl fly, ) dy, VP,
“*k

and
X ;
“*k

Q. is the k, quanuzation value und 004

[
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Eﬁ; The expected mean square error is given by [34]

X~

ko ;

o E{(y, ¥14)* Y =0 -Ely, DIEQX ') E(Z v, ) (6.9)

- .

v where Y isthe vector
|
[ = t
I=[y,%" (6.10)

!

0. Equation (6.9 ) can be written in the form (Appendix D)

K>

v E{e? }=0,2 (1-p? X1-0 )J(1-p* @) (6.11)
A

4'-

' where @ is given by:

o

g

e =p/m. (6.12)
N Y
}

y A plot of E{e%) ,'0'12 vs. @ is shown in Figure 6.2 for p>=0, 0.25, 0.5, 0.75. The figure
: shows that the mean square error is decreasing with ®. Recall that the criterion is to
(.' minimize the mean square error.

Equivalently the problem now is to maximize ® over all quantization rules where

7
)

i ,

L) 2

? ! (gxkaka)

o 0= ' . (6.13)
- Y pol

, =1k "k

S

e Appling the Cauchy Inequality [35] to the numerator vields

- : :

5 2 2 2 ,

E' (§_= lPk Q. Cy) Sk(—l P, Qk )k(tl P, C.°) (6.14)

q ‘
& |

3 with equality if and only if

2
0N Qk = Ck' (615)
i
)
g
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R Therefore

)

.s" -

7.‘:\ os——¥ p o2 (6.16)

; e lE=1k Tk '

:!" .

A"

:::.E: gives an upper bound of ®. Equation (6.15) says we maximize ® , and thus minimize
"l'" ;ﬁ E{e?} by making the quantization level Q, equal to the conditional mean of y, given
;"-W that y, lies in the kth quantization interval. This is one of the conditions
\:-::I characterizing the classical Lloyd-Max quantizer [18,23.] There remains the problem of
*-\,.: how to pick X, ,k=1,2,..N, so that the upper bound of @ in (6.16) is maximum.
d‘.‘

Notice that the upper bound of ® is . Therefore, the optimum quantizer will be a

( Lioyd-Max quantizer if we prove that maximizing n over all choices of the set of
‘ points {X, }, k=1,2,...\, is equivalent to minimizing the distortion E{(y,-y, }*}. Since
; e-'.;’; q
e Ef 2 = 5.2.26.2n+62 6.17
‘e L(Yl'qu) } = 06,%20n+0," (6.17)
o = o %(1-n)
K+l
‘*L"' - . . . - 3 . 3 .
‘::5:}_ then maximizing | will minimize the distortion E{(y,-¥, q)2} and vice versa. Since the
e . . . . . o . . .
" Lloyd-Max quantizer is the optimum quantizer for mintmum distortion it follows that
{, b it is also optimum for our problem. Accordingly choose Xy 's such that [23,13], (see
3-'-::: also Appendix G)
.a:.-.
[
0% Q + Q. :
'3 X = — k=12,..N. (6.18)
o
N
,,.'\- Equations (6.15) and (6.18) along with (6.7) completely design the quantizer [23,18].
ety Parameters of the Lloyd-Max quantizer can be calculated efficiently using the method
!;' of successive substitution (Appendix G). Values of E{e? }/cs'l2 vs. N are listed in Table
S
:T{i- 2 for p =0, 0.25, 0.5, 0.75. The table shows the exponentiai decay of the MMSE as the
:::f.: number of quantization levels increases.
;’j Table 3 shows a comparison between the average number of bits per sample used in
~’f~;,—'f this system and another method in which the Maximum Output Entropy (MOE)
;::Ejij Quantizer [36] is used. Huffman coding [37] is assumed for both quantizers.
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MINIMUM MEAN SQUARE ERROR VS. THE

TABLE 2

NUMBER OF QUANTIZATION LEVELS

N p 0 0.25 0.5 0.75
2 0.3634 0.3548 0.3241 0.2477
4 0.1175 0.1166 0.1131 0.1021
3 0.0345 0.0345 0.0342 0.0330
16 0.0095 0.0095 0.0095 0.0094
32 0.0025 0.0025 0.0025 0.0025
64 0.0006 0.0006 0.0006 0.0006 -
128 0.00016 0.00016 0.00016 0.00016
TABLE 3
COMPARISON OF THE AVERAGE NUMBER OF BITS IN
THE MMSE AND THE MOE SYSTEMS
N 2 4 6 8
Qpimum 1 1989 2.4763 2.8342
MOE ! 2 2.667 3
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C. CONCLUSION

The trade off between performance and communication is clear from Table 2.
For p =0.5 the relative MMSE is 0.75 without communication. This corresponds to
substituting @ = 0 in (6.11 ). The relative MMSE decreases to 0.32 using one
information bit per sample. The relative MMSE is 0.11 using two bits/sample. It is
only 0.03 using 3 information bits/sample (\N=8) and is 0.00016 using 7 bits/sample.
We also notice that for high number of quantization levels the estimation error is
approximately equal to the the quantization error. This means that the estimator
depends mainly on y, q for fine quantization. For coarser quantization the estimator
depends heavily on y, to reduce the MMSE. Table 3 shows that the designed system
has considerable reduction in the number of bits per sample compared to the MOE
quantizer system.

D. GENERALIZATION TO THE VECTOR CASE

In this section we will consider regeneration of a random vector ¥, from its
quantized version ¥, q and a correlated continuous scalar y, . As an application
consider a sensor S, monitoring the activities of N stations. Due to some
considerations, perhaps of safety nature, only simple sensors can be placed near the
stations. Because of other considerations, such as limited bandwidth communication
channels, only quantized sensor measurements can be sent to the monitor. Specific
examples can be the case of monitoring the states of a target in a far field or the
positions of N targets in a multitracking problem [38,39]. Another example is to
monitor the radiation levels outside of N nuclear reactors. A third example is
monitoring the activities of N enemy transmitters.

Let us design the quantizers at the N sensor sites and the estimation rule at the
monitor site so as to minimize the mean square error of each component of ¥ . Let ¥,

,the sensor observation vector be given by;

¥ =0y Y% s (6.19)

where Yy is the j, sensor observation ,j=1,2,..,N. We will assume that components of

Y are independent. i.e.

Ry, vy ¥ =05, /¥,) A=) ij=12..N. (6.20)

Under the above conditions, also v,. and y,. are conditionally independent for i # j, so
Yu liq 3 P ]
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The MMS estimate of ¥, given I, q is given by

oy A

I =E{L /L %,)- (6.22)

Or

.-‘
-

R
=t

2

Ef)!

n
N

) A R
M
¢

-
——
v

—

DD

L0 .0
Said

[}

e ad

>
i

(6.23)
DA E'{yly /yL\'q Yy )

:::. Let us denote the error vector by E , so
o E=[e e, eyl (6.29)

e where e is the error in estimating v, i=1,2,....,N. The MMS error covariance matrix is

E(EE'} =E((, -X, XZ, -Z, }}. (6.25)
KN The trace of the error covariance matrix is given by

D)
N L} V
" trace( E{EE'}) =Y r%{eﬁ } (6.26)

] 1-—-
where
g
3 ei =yi 'E{y“ /yliq ’y2 } (627)
Minimizing the trace of the covariance matrix in (6.26 ) ts accomplished by minimizing
each summand alone since every summand is nonnegative. Now assuming Linear

ﬂw Minimum Mean Square Estimation, the problem of minimizing E {ei2 } implies using
(
AgH the Lloyd-Max Quantizer to quantize y,; as was shown previously.
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" In conclusion the Linear Minimum Mean Square Estimate of the observation
iy vector I implies using the Lloyd-Max quantizers at the sensor sites and the same linear
"ol combining considered in the scaler case at the central processor.
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VII. SUMMARY, RESULTS, CONCLUSIONS AND SUGGESTIONS FOR
FUTURE RESEARCHS

A. SUMMARY

This Thesis begins by listing some reasons why Distributed Signal Processing is
more practical than Centralized Signal Processing. The status of Distributed Detection,
an important case of Distributed Signal Processing, and its complexity are reviewed in
Chapter I.

Chapter II deals with the problem of optimum fusion of local decisions into a
global decision. The relationship between the optimum fusion rule and the ratio of
error cost is shown. The dependance of the performance of the optimum fusion rule on
the correlation coefficients between sensor observations is throughly analyzed. For
higher values of the correlation coefficients the Distributed Detection system is shown
to reduce to the detector of the highest signal-to-noise ratio.

A compromise technique between Centralized Detection and Distributed
Detection, Quantized Detection, is suggested in Chapter [II. The main issue of that
chapter is to control the degree of centralization according to the communications

channel constraints. The Quantized Detection technique replaces local detectors by
quantizers and sets a global fusion rule that approximates the centralized decision rule. |
The algorithm matches the other techniques at extreme limits. ‘
Chapter IV contains some specific applications of the Quantized Detection |
Algorithm for detection problems. A significant performance improvement is attained
by replacing Distributed Detection with Quantized Detection with three quantization
levels (one and half information bits per sample vice one information bit per sample).
Chapter V considers applicability of the Quantized Detection Algorithm to the
case of vector observations. In this case local sufficient statistics are quantized in the
same wayv as before.
Chapter VI deals with the regeneration of sensor observations from their
quantized versions and another correlated observation. The local quantizers and the
optimum linear data fusion are designed. We arrive at the following results and
conclusions.
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B. RESULTS
1. Detection with Distributed Sensors
a. Optimum Fusion Rules in Distributed Detection

The optimum fusion rule depends on the ratio of costs of different types of
detection errors. For high cost of false alarm relative to the cost of missing the target
the AND fusion rule is better than the OR fusion rule, and vice versa.

The performance of the optimum fusion rule depends on the degree of
correlation between sensors. The performance degrades as the correlation coeflicient
increases. The worst performance of the optimum fusion rule is at and above a critical
value of the correlation coefficient p__ . In that region of correlation the best system
employs only the detector of higher signal-to-noise ratio, ignoring the lower signal-to-
noise ratio sensor entirely. The performance of the Distributed Detection system
improves as the signal-to-noise ratio imbalance between sensors increases. However
there is a large performance difference between the Centralized Detection and the
Distributed Detection for values of the correlation coefficient above p_.

Below p__ the performance of the Distributed Detection system improves as
the correlation coefTicient gets smaller. The best performance (lowest detection cost) of
the Distributed Detection system is achieved at p=-1. Recall that the Centralized
Detection system has perfect detection at p =-1. This is due to the efficient use of the
information contained in two observations of positive signals and anticorrelated noise
samples.

The large performance difference between Centralized Detection and
Distributed Detection systems is due to the loss of information in the local detection
processes. As a remedy to the performance degradation in Distributed Detection we
have introduced the Quantized Detection Algorithm.

b. Quantized Detection

There is a great improvement in the system performance using Quantized
Detection with three quantization levels in comparison to Distributed Detection. This
performance difference between Quantized Detection and Distributed Detection
decreases as the correlation between sensors increases.

The Quantized Detection algorithm is applicable to the case of vector
observations and waveform observations. In those cases, the local sufficient statistics

are to be quantized at the local processor and transmitted to the central site for fusion.
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The Quantized Detection algorithm is implemented by the quantizers as
local processors and a fusion rule, suggested by the Centralized Detection decision rule,
at the central site. The quantizers used in the Quantized Detection algorithm are
designed to minimize the detection cost.

2. Minimum Mean Square Estimation in Distributed Sensor Systems
Minimum mean square estimation in Distributed Sensor Systems involves the
classical Lloyd-Max minimum distortion quantizers at the local levels and linear
processing at the global central level. A faster iterative algorithm to calculate the
Lloyd-Max quantizer parameters is the method of successive substitution. It also has
more accurate results than previously reported techniques.

C. CONCLUSIONS
We conclude the following:

1. Global optimization of the Distributed Detection implies picking the fusion rule
and corresponding local decisions that minimizes the detection cost.

2. The optimum fusion rule in Decentralized Detection depends on the correlation
coefficient , the a priorn probabilities and the ratio of costs.

3. For optimum fusion of two local unbalanced decisions there is a particular
value of p that decides the optimum fusion rule.

4. For p = p_ OR fusion is better for higher cost of missing target while AND
fusion is better for higher costs of false alarm.

5. Forp > p__ the optimum fusion rule is to ignore the sensor of lower signal-to-
noise ratio and optimize the decision of the higher signal-to-noise ratio sensor.

6. The poor performance of Distributed Detection compared to Centralized
Detection is due to the loss of information at the local levels.

7. The Quantized Detection system matches the Distributed Detection system and
the Centralized Detection system for the two extreme conditions of
quantization. As the number of quantization levels increases the Quantized
Detection converges to Centralized Detection.

8. The Quantized Detection algorithm has a tremendous improvement In
performance over Distributed Detection even with only 3 quantization levels.

9. The performance difference between Quantized Detection and Distributed
Detection increases as the correlation of the observations gets smaller.

10. In case of linear Centralized Detection threshold equations in the observation
space, Distributed Detection and Centralized Detection are special cases of
Quantized Detection.

I1. The Quantized Detection algorithm can get the maximum allowable
performance in the presence of communication constraints.
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¥ 12.  The Quantized Detection algorithm can be applied to arbitrary distributions for
" the observations. .
o 13. The method of successive substitution is applicable to the design of many types
e of quantizers. It has a simple programming procedure and very accurate results.
o
1
e D. SUGGESTIONS FOR FUTURE RESEARCH .
: The following are some areas the Quantized Detection algorithm can extend to:
o I. Optimum detection using quantized sensor observations for the case of .
G unknown signal in noise.
". Detection of M-ary phenomena using quantized sensor data.
; _: 3. Utilizing the Quantized Detection algorithm over noisy channels.
) . - . . - .
&N 4. [Ilustration of the relation between the complexity in some suitable units and
o the amount of information delivered to the fusion center.
( 5. Utilizing the Quantized Detection algorithm to meet the Neyman-Pearson
e criterion.
: -, ‘. - . . . . .
£ 6. Extension of Distributed Detection and Quantized Detection to more than two
o sensors with correlated observations and unequal SNR's.
‘ 7. Development of general principles for parsing fusion rules given a Centralized
; Detection surface in N-dimensional space.
". . . - . . - .
o 8. Application of the Quantized Detection method to target detection,classification
__:C and trackir g using distributed sensors. ]
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f_‘ APPENDIX A
e PROBABILITY OF DETECTION AND PROBABILITY OF FALSE
Y‘ . ALARM OF THE PRIMARY DECISION MAKER
e
'v'-_t. Given that the Primary Decision Maker (PDM) receives Qj (the j, quantization
-~
.:i level of the Consultant observation yl), and that its own observation is y,, its
“ observation space is divided into two decision subspaces le and ZOj' Let us denote the
:& conditional probability of detection and probability of false alarm given Qj by P dj and
E,':: Pﬁ respectively. P di and Pﬁ are given by:
g
f Py = Pr(Declare H; [y, =Q H, is true) (A.1)
b
N and
i
l..
0
Pﬁ = Pr(Declare H, ,’qu =Qj ,Hg is true). (A.2)
¢
M2 These can be expressed as:
(="
v
( Py ={ R ivg =Q H My, (A3)
;.. ] ‘52 3 Zlj q )
3.
> !
Nt and i
3
[z Pi =l oz 2 M1q =Q Ho)dy, (A-4)
o 2= 4y
Y
:,' or equivalently as ,
| ]
g
> P,.= Ry, vy iy, =Q H,)dy, dy (A.5)
d T2 kS WALS Tt b
;_: 9 S[z‘izlj N1 L
.
® and
4 ;:
2 P = § Ry, ¥ iv1q =Q Hg )y, dy (A.6)
fi 17277 0 /%71 %2
':; : !’2 €Z);" v, T
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But fy, .y, / Q, .H; ) is given by [40]

A
:i
N fy, v, /H; VPHQ H, )y, € 1%, Xy ]
Ny Ry, ¥, /Q; H, )= 1727 G T DT TR (A7)
o } 0 otherwise
{
2
o where Pr(Qj /H, ) is the probability of the j, quantization level of y, under hypothesis
’c
.E" H; . It is given by:
o
\
(- Pr(Q/Hp=| ‘+(’(v1/H ) dy, i=1.2,.N i=0,1 (A.8)
]
o %
>
L
e The probability of detection and probability of false alarm are now
\
o .
L
::?Z: P, __;-—-il Pr(Q /H )Py, (A.9)
v
®
e and
o N
P, = Z Pr(Q; 'Hy )Py (A.10)
{ =1

Inserting (A.5 and (A.6 ) into (A.9 ) and (A.10 ) vields

. N
RN AR
+ MO

O

1=

Pd=§’ {*"lg Zt‘(}l,yz /H, ) dy, dv, (3.4)

/

Vo
DL R MR M N

and

Do,
2

@

. X, .0
P =? i+l v, /H, ) dy, dy 3.5
f = 4 § fyzezrl(?’lyz o) dy dy, (3.5)

X
1

where Z is the decision region Z, given that vy, el X ,XJ+l !.
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APPENDIX B

PROGRAM LISTING TO CALCULATE PARAMETERS OF THE N AND
i THE (N +1)-LEVEL QUANTIZERS

=
LA A

X ) In this appendix we give a program listing to calculate the parameters of the N
- and the (N + 1)-level quantizers in configuration A
L]
- C*******************************************************************
. . C THIS PROGRAM CALCULATES THE OPTIMUM N-LEVEL AND (N+1)-level
e gUANTIZER PARAMETERS
o C FOR A SYSTEM OF TWO QUANTIZERS AND THEIR FUSION CENTER.
Y C THE RATIO OF COSTS C RANGES FROM 0.1 AND 10 .
oo ¢ THE VALUE OF N =2,3,4,5 AND 6.
I C THE PROGRAM USES THE MODIFIED METHOD OF SUCCESSIVE SUBSTITUTIONS .
i WY CHRARARAAARAAKERARAKRAAKRAKRKKKRAKRARKARKRARRAKARRAARRAARKRRRRAAARAA AR R RARRAK KKK
[4 c KhkkAkAkkRkAkRAAkxkxhxdkkhkhkkiiihikiik
zr REAL*8 X(9),T(9),XX(9), TT(9£ ,C,51,52, A A12 A21,R,C1(20),R1(2)
,: 1,AERR,RERR, ERROR PD,PF,PD1(20, 9 6) PFl 20 ,PD 2
N 1,PF2,PDC,PFC,X2,R3(20,2, 6) X11 DCADER F1,F2,APD,APF,Al,A2,AP
o INTEGER K,N, I P N1,N2, M
i\ EXTERNAL Fl,FZ
z COMMON X11,R
WY

I?AggbCI/lo .0po,9.000,8,000,7.000,6.0D0,5.0D00,4.0D0,3.0D0,2.0D0,
®

ll ODO,.90D0,.80D0,.70D0,.60D0,.50D0,.40D0 .30D0,.20D0,0.10D0/

i3 =1.0D0
g A2=2.0D0
X S1=1.0D0
hi~ $2=1.0D0
o nglg=0.600D0
B R1(2)=0.8000D0
{ AERR=0.0D0
~ , RERR=0.00010D0
NS, C*****************************************************
e c INITIAL GUESS
> XX(1)=-9.50000D0
o XX(2)=-1.9000D0
"4 XX (3)=-1.50000D0
XX(4)=-0.89000D0
XX (5)=00.50000D0
I~ XX(6)=0.09000D0
N XX (7)=00.99000D0
N XX(8)=01.50000D0
N XX (9)=2.09000D0
s o TT(1)=4.67000D0
e C TT(2)=3.89000D0
° C TT(3)=2.67000D0
g C TT(4)=2.29000D0
~ c TT(5)=1.90000D0
e c TT(6)=1.49000D0
D C TT(7)=1.09000D0
A0 c TT(8)=00.50000D0
e C TT(9)=0,13000D0
‘3' c******* e 7k 7k Fe 7 s ke 7 Tk K 7 Tk K e K ok o ke e ok k e e K Tk e Tk ok gk ke e ke gk vk vk gk vk ok Fe vk ke ok A sk e ke
PY C THE FOLLOWING INITIAL VALUES OF T'S CORRESPOND TO THE CASE
s C OF CORRELATION COEFFICIENT GREATER THAN Al/A2
o TT(9)=4.67000D0
43 TT(8)=3.89000D0
So% TT(7)=2.67000D0
oY TT(6)=2.29000D0
. TT(5)=1.90000D0
Y TT(4)=1.49000D0
) TT(3)=1.09000D0
St
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TT€2;=OO.50000D0

TT(1)=0.19000D0

DO S00 N=2,2
WRITE(9 60)N

DO I=6,9
CRAxRIIKK KR K F KK R F KRR KR TR KAk kR dekk ke ke Ak

c INPUT VALUE(S) OF THR CORRELATION COEFFICIENTS
R=0.10DO*DFLOAT(I)
WRITE (S, 61)R
c DO 200 M=1
M=1
C=C1(M)
TE(9,61)C

C*************iﬁgi***#**g***************
< INPUT}g?ﬁé%FM NUMBER OF ITERATIONS HERE

GO

-

]
RRXRXRR
(7]

1
-
Shiaiefoafots

A~
~ R 2
S Y - 1

.GT. )T
A-(Sl*XX(Z)-R*S TT(1
Al2=(S2*A1-R*S1*
A21=(S1*A2- R*SZ*
TT(l) (A2*A2/2.0D0+DLO
1 T(l) %P%)G(DERFC(A al12)-2.0D0)))/A2
S1I*TT(2)~- R*SZ*XX(Z;)/(Sl*SZ*DSQRTE(1 .0D0-R**2) %2, ooog)
=(S2*T(1)-R*S1*XX(2 /252*51*05 RT((1.0D0-R**2)%2.0D0)
XX(2)=(A1*A1/2.0D0+DLOG(C)+DLOG( (DERFC(A)-
1 DER(FZC) g{)}() A DERFC(A-A21)-DERFC(B~-A21))))/Al

IF (N .EQ. 2) GO TO 17

DO 15 P=2,N-1

P
g-R*SZ*TiP))g *S2*DSQRT(
P+1)-R*S1*T Z*SIRD%8§
))

N
N
N
2 S1*S2*DSQRT((1.0D0-R**2)*2,0D0)

%SI*SZXDS QRT él .0DO- R**Z;*Z .0DO g

S1*S2*DSQRT((1.0D0-R**2)*2,0D0
+DLOG( (DERFC A)-

o
c) N
’\\/\./\

Nn\\/\

0DO-R**2)*2,0D0) )

*¥ 1.0D0-R**2)*2.0D0))
TT(P)=(A2*A2/2.0D0+DLOG ( )+DLOG( (a)-

1 DERFCSB%%Q(DERFC(A A12)-DERFC(B-Al2

P)
+1)=R*S2*X(P+1))/(S1*S2*DSQRT ( (
B=SSZ*T(P)-R*SI*X(P+1))/(SZ*SI*DS RT(

XX P+l; Al*a1/2.0D0+DLOG(C)+DLOG( (DE
1 DERFC(B))/(DERFC(A-A21)-DERFC(B-2a21))))/
15 CONTINUE
17  CONTINUE
TT(N)= g 2*a2/2. ODO+DLOF(C?+DLOG(DERFC((XX(N) R*TT(N))/

(1.
T((
RFC
))/

()
il
-~
wn
fa—
A-
=]
o

/22

1.0D0-R**2)*2.,0D0))
(1.0D0-R**2)*2.0D0))
§ (a)-

legRT( .0DO0- R**Z)*Z 0DO
REC({ (XX(N)-Al- R*(TT(N -A2))/
IDS RT((1.0D0-R**2)*2 )

C*****x7!):x*7\-****************************************************

C CHECKING THE ACCURACY
C INPUT REQUIRED PRECISION HERE
AP=0.10d4-07
IF((DABS(T(N));T(N)) .GT. AP).OR.(DABS(X(N)-XX(N)) .GT.

10 CONTINUE
él) ==-10.0D0
X(N+1)=10.0D0

APD=0.0D0

APF=0.0D0

Do %g g‘é)N
B=X
Kll= (Q
APD=APD+0.50D0*DCADRE (F1,A,B,AERR,RERR,ERROR, IRE1)

N\
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XX
g

@

Y IF (IRE1 .NE. 0) WRITE(6,60)IREl

‘G APF=APF+0.50DO*DCADRE (F2,A,B,AERR,RERR, ERROR, IRE1)
w7 IF (IRE1 .NE. 0) WRITE(6,60)IREl

v 81 CONTINUE

o PD1(M,I, N -APD

NS PFl I
¢ i l 21, 0D0+C1iHl*APF-APD
. C************* ***** *x******* o 7k Fe Fe e e 7 A o Tk K Kk ke A Ao ok 7k Tk e R
0 c QUANTIZER PARAMETERS

N DO 120

o WRITE(9 62) X(J),T(J)

N 120  CONTINUE

o c WRITE(9,90)
oy C200 CONTINUE

> c wnrrsse,sog
. c WRITE(9,90

L, 600 CONTINUE

e c WRITE(9,90

B c WRITE(9,90

oy C WRITE(9,90
N 500 CONTINUE
N DO 501 J=1,2
' DO 502 I=1,20

C**********************""***********************************

Ry c OUTPUT DETECTION COST
el WRITE(10 61)C1(I), (R N) 6)
o CrRAKKAKRARAAKKRAKK KKK AR RKK KKK **xxxxxxxxxxkx** ****xkxx*****
e o OUTPUT PROBABILITY OF DETECTION AND PROBABILITY OF
ty c FALSE ALARM FOR DIFFERENT VALUES OF N
v WRITE(8,61)( PD1(I,J,N),PF1(I,J,N) ,N=2,6)
Py 502 CONTINUE

g 501 CONTINUE

oY FORMAT(1X, 14, 4( X,F15.8 22
J z C90 FORMAT (2X, 'CON H ek ** *****************************|)
ag« 61 FORMAT(1X,10(1X,F6. \g
ol 62  FORMAT(IX.2(1X,F15.8$
Koo STOP
v END
{ FUNCTION Fl(X)
™ REAL*8 X,F1,Al,A2,R,X11,F11,F12
ol COMMON X11,R
4 Al=1.0DO
T A2=2.0D0

el F11=DEXP (- (X-A1)**2/2.0D0)/

o 1DS%RT(8 .ODO*DATAN(1.0DO )

DERFC((Xll -A2- (X-Al)*R {

0, 1(DSQRT(2.0D0%(1.0D0-R**2) )
o F12
Wi RETURN

e END

a7 FUNCTION F2(X)

oy REAL*8 X,F2,R,X11,F11,F12
[y COMMON Xi1,R

P F11=DEXP(-X**2/2.0D0)/

1DS%RT(8 .ODO*DATAN(1.0D0))

o =DERFC( (X11-X*R)/

" 1DSQRT(2.0D0*{1.0D0~-R**2)))

v FZ F11*F12

r5 RETURN
I END
'
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APPENDIX C

PROGRAM LISTING TO CALCULATE PARAMETERS OF THE TWO
QUANTIZERS

In this appendix we give a program listing to calculate the parameters of the two

N-level quantizers in Configuration B.

C********************************************************ﬁ‘*********

C THIS PROGRAM CALCULATES THE OPTIMUM N-LEVEL QUANTIZER PARAMETERS
C FOR A SYSTEM OF TWO QUANTIZERS AND THEIR FUSION CENTER .
C THE CORRELATION COEFFICIENT IS ASSUMED TO BE LESS THAN Al/A2.
C FOR THE CORRELATION COEFFICIENT IS GREATER THAN Al/A2 THE
C THE PROGRAM NEEDS SLITE MODIFICATIONS ACCORDING TO THE QD ALGORITHM.
C THE RATIO OF COSTS C RANGES FROM 0.1 AND 10.
C THE VALUE OF N =2,3,4,5 AND 6.
C THE PROGRAM USES THE MOLIFIED METHOD OF SUCCESSIVE SUBSTITUTIONS .
CHIARKIRRARAKRRKRRRARKRKKKKKKIRRIRKRKAR AR KKK AR K R 3k 7k sk ok 7 s o e sk ok ok ok ok o ok e
REAL*8 X(8),T(8),XX(8),TT(8),Al1,A2,51,52, R T12,T21,AA2,A,B
1 AERR,RERR,ERROR, PD, PF, 'PD1(20, 9 6) 'PF1(20,9,6), 'PD2
1,PF2,PDC, PFC, C1(20) a2i,al12,C.X
Xll DCAD:R Fl F2,APD, APF,R3 (20 2,6)
INTEGER K ,IER1,IER2,M,P ,Q,L
EXTERNAL Fl FZ
I?Aggngl/lo ODO 9.000,8.0D0,7.0D0,6.0D0,5.000,4.0D0,3.0D00,2.0D0,
11.0D0, .90D0, .80D0, .70D0, .60D0, .50D0, .40D0, . 30DC, .20D0, 0.10D0/
c******Sgrggyxfiixsk********************************************
C INPIT SIGNALS HERE
Al=4.0D0
A2=2.0D0
C INPIT VARIANCE HERE
S1=1.0D0

2=1.0D0
ChhkhhkkhFAhRARRIRAIIA kKR KKR** Ak kkikikkkkhkihhikikikhikkkkkkkikikk

C INITIAL GUESS QOF THE PARAMETERS
§§ 1)=-0.50000D0

2)=0.89000D0
X(3)=01.50000D0

XX{(4)=2.89000D0
§)=03.500000D0

c******ff;f *3&2222222*****************************************

C INITIAL VALUES OF T'S FOR CORRELATION COEFFICIENT GREATER THAN Al/A2
TT(1)=-0.67009D0

TT 2)=0.89000D0

T(3)=01.67000D0
TT 4)=2.89000D0
T(5)=03.50000D0

T 6)=4.89000D0

e e e s ke e de ek Ao e e 7k 7 e R e ke ek A e e gk g sk sk de ek de e Tk ek ek ok ke e e ok gk e Aok ok ok ke ok

C INITIAL VALUES OF T'S FOR CORRELATION COEFFICIENT LESS THAN Al/A2

C PUT TT(1l) > TT(2)>.....>TT(N

ChrhRA R K ek de R K & kK Rk R AR KK A 7K e ko e e de ke e e ek e ek de ek ok e ek
AERR=0.0D0
RERR=0.00010D0
DO 500 N— 5
DO 11
R= DFLOAT(I 1)*0 250D0
DO 20 M=1,20
C=Cl(M)
K=0

5 R=K+1
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c WRITE(6,60)K,T1,T11,T2,T22
IF (K .GT. 100) GO TO 10
DO 25 L=1
T{Lg‘TTﬁL
X(L)=XX(L
25 CONTINUE

XX(1)=(Al*al/2. 0D0+DLOG(C?+DLOG(DERFC((T(l) R*X(l))/
1DSQRT( (1 ooo R¥*2)*
1/DERFC (T 1)-A2-R iX(l) a1))/
%DS ﬁT( .0D0-R**2)*2,000))
IF (N .EQ. 1) GO TO 16
A21=(S1*A2-R SZ*Alg/i l*SZ*DSQRTs 1.0DO-R**2;*2.00033
gézl Z;A% g*il*AZ 7{51*%52*DSQRT((1.0D0~R**2)*2.0D0C

B=(S2*X(P+1)~-R*S1*T(P))/(S2*S1*DSQRT( (1.0D0-R**2)*2,0D0
TT(P)= (AZ*AZ/Z 0DO+DLOG(C)+DLOG( (DER
1 2/(DERFC(A A12)~-DERFC(B-a12) 3 3
A‘(Sl*T P+1 SZ*X(P+1 )/(51*52*05 RT((1.0D0-R**2)*2,0D0))
B=(S2*T(P)-R 51*x P+1 ){ S2*S1*DSORT((1.0D0-R**2)*2.0D0))
xx<9+12 =(Al*a1/2. ODO+DLOG C)+DLOG( (DERFC(A) -
1 DERFC(B))/(DERFC(A-AZ21)-DERFC(B-a21))))/Al
CONTINUE
CONTINUE
TT(N)=(A2*A2/2. ODO+DLOG(Cg+DLOG(DERFC((Y(N) R*T(N))/
1DS RT(gl .0DQ~R**2

A=(S1*X(P)~ R*SZ*T(Pz;{}Sl*SZ*DSQRT(él .0DO-R**2)%*2, ODO);)

-
[ N1, Y

*
1/DERFC((X(N)-Al- Rl T(N)-AZ))/
%DS RT((1.0D0- R**Z)*Z 0D0))

a2
%%((DAES(T/”) TT(N)? .GT. OSIOD 05).0R. (DABS(X(N)-XX(N)) .

1 -05))G0 TO
10 CONTINUE
X(N+1)=10.0D0
APD=0.0D0
APF=0,0D0
DO 81 Q=1,N
A=X(0)
B=X(Q+1
x11=T(0
APD=APD+0.50D0*DCADRE (F1
IF (IREl .NE. 0) WRITE(6
APF=APF+0.S0DO*DCADRE (F2
IF (IREl .NE. 0) WRITE(6
81 CONTINUE
PDlé M, 1, ;=APD
M,I.N

ERR RERR,ERROR, IREL)

,A,B,A
,60)IRE
,AB, AERR RERR,ERROR, IRELl)
,60)IRE
PF1l =APF
R3(M,I,N)=1,0D0+C1(M)*PF1 1(M I,N)-PDL(M T N)
C************xx*xxx***xx*x*-k* xx** ok R A 5 e Kk K K % 7k K ek ok Fek
C OUTPUT SYSTEM PARAMETERS
DO 120 J=1
waxra(e 62) X(J),T(J)
126G CONTINUE
C WRITE(9,61)C,T(1),T(2),APD,APF
C WRITE(8,61)APD APF
C WRITE(6,61)C,X(1),X(2),APD,APF,PDC,PFC
20 CCNTINUE
11 CONTINUE
Cc WRITE(9,90)
WRITE(8,90)

500 CONTINUE
C*********************************************k*************
C OQUTPUT AVERAGE COST

DO S01 J=1,2
DO 502 I=1,b20
WRITE(10,61)CL(I), ( R3 N) ,N=1,%)
C ek ek dedede e o Fekow KX o e o 5 o e ¢ k7 e e ok Sk K x*********x***************
C OUTPUT ©PROB. OF DETECTION AND PROB. OF FALSE ALARM
WRITE(8,61)( PDL(I,J N),PFI1(I,J,N) ,N=1,5)
502 CONTINUE
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WRITE(8,90)
201 CONTINUE
98 Egﬁﬂi% %ﬁ:?%ég(éx’Egiill******************************:)
6l FORMAT 1X,10(1X,F6.4;;
62 F%%%%T 1X,2(1X,F15.8

END

FUNCTION F1(X)

REAL*8 X,F1,Al,A2,R,X11,F11,F12

COMMON X11,R

Al=4.0D0

A2=2.0D0

F11=DEXP(-(X~A1)**2/2.0D0)/
1DSQRT(8.0DO*DATAN(1.0D0))

F12=DERFC((X11~A2-(X-al *R;{
l(DS%BT 2.0D0*(1.0D0-R**2))

F1=F11*F12

RETURN

END

FUNCTION F2(X)

REAL*8 X,F2,R,X11,F11,F12

COMMON X11,R

F11=DEXP(-X**2/2,0D0)/
195% T(8.0DO*DATAN(1.0D0Q))

F12=DERFC((X11-X*R)/
1DSQRT(2.0D0*({1.0D0-R**2)))

F2=F11*F12

RETURN

END
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APPENDIX D

PROGRAM LISTING TO CALCULATE PARAMETERS OF THE TWO
QUANTIZERS FOR THE CASE OF EXPONENTIAL DISTRIBUTIONS

e e e e e o e Fo ke e e e Fe ok e de ek ok ok e Kok

THIS PROGRAM CALCULATES THE OPTIMUM N-LEVEL QUANTIZERS OF TWO SEN-
SOR OBSERVATIONS OF EXPONENTIAL DISTRIBUTIONS
gO MINIMIZE A GLOBAL SYSTEM RISK FOR FUSICON

EE CHAPTER IV
Fe e s e e e e e ek e e e ok ok e sk ok ok e e e

REAL*B X(8), T(8§ XX(B) TT(8),PD,PF, PDl(ZO 9 625PF1(20,9,6),P02

aaOnNnOnn

1,PF2,PDC,PFC,C1(20),C,X2,X11, APD, APF,R3 (20
APC(ZO 2),AFC(20,2),R4(20,2Y,AD2,AF2,RR2
INTEGER K,N,I,IER1, IERZ M,P.0 L, MX
DATA c1/so ooo 40.0D0,30.0D0,20.0D0,15. ono 10.0D0,9.0D0,
18.0D0,7.0D0,6.0D0,5.000,4.0DG,3.0D0,2.0D0,1.50D0,
11.0D0, .90D0 .80DC | ,70D0 , .60D0/
c e s e 70 7 gk 2 e T ¢ ¢ e 3 e 7k 7 e e S e T e e
C INITIAL VALUES OF QUANTIZER PARAMETERS
C FIRST QUANTIZER

’

XX(1)=00.00000D0
XX(2)=0.89000D0
XX(3)=01.50000D0
XX(4)=1.89000D0
XX(5)=02.50000D0
XX(6)=3.09000D0
C SECOND QUANTIZER
TT(1)=3.090000D0
TT(2)=2.50000D0
TT(3)=01.89000D0
TT(4)=1.50000D0
TT(5)=00.89000D0
TT(6)=0.00000D0
DO 500 N=3,6
DO 11 I=1,2

C PARAMETERS OF THE EXP. DISTRIBUTIONS
AL=DFLOAT(I)*0.50D0
DO 20 M=1,20

C=C1§M)
DO 55 P=1,M
TTE )=DLOG (2.0DO*C)*DFLOAT (N-P+1)/DFLOAT(N) /AL
XX (N-P+1)=DLOG(2.0DO0*C)*DFLOAT(N-P+1)/DFLOAT(N)/AL
55 CONTINUE
K=0
5 K=K+1

Do 89 PP=1,N
TSPP§=TT§PP;
X(PP)=KX(PP

89 CONTINUE
C R FFedede gk e R J K K 7 e ok e e ek ok e
c INP%% g%%IMUH NUMBER OF ITERATIONS
IF (K .GT.MX) GO TO 10
C Xﬁgl) D%O%E% .0DC*C)/AL-TT(1)
TT? g (DLCG(DEXP(~-AL*XX (1) )+DEXP (-AL*XX(2)))+DLOG(2.0D0*C))/AL

XK? ; gDEOGgDEKPS AL*TTé gg+DEXP§ L*TTgP lggg+DLOG(2 ODO*C;;/AL
TT(P DL88N¥%XPE-AL*XX P) )+DEXP(-AL*XX(P+1 +DLOG(2.0D0*C) ) /AL

XX (M)=(DLOG(2. ODO*C)+DLOG(DEKP(TT(N))+DEKP( AL*TT(N-1))))/AL
c Tg%?))D%OG(Z .0DO*C) /AL-KX(N)
C ACCURACY CHECKING
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C OUTPUT DETECTION COST

C****R******xx**w***rn*w*
C OUTPUT PROB. OF DETECTION AND PROB. OF FALSE ALARM

A o oo e - L aRS A 48 8 a0 o 0 e ok AR £oh

C INPUT PRECESSION HERE
AP=0.10d-05
IF((DABS(xx(Ng-x(N)) .GT. AP).OR.(DABS(TT(1)-T(1))
1 APJ)GO TO 5

10 CONTINUE
wnrrs(s*sO) K
BL=2.0D0*A
APD=0.0D0
APF=0.0D0
DO 81 Q=1,N-1
APD=A D+DEXP2-AL*TT2 ;;*gosxpE-AL*xxgggg-osxpg-AL*xx€Q+1g;;
APF=APF+DEXP( -BL*TT *(DEXP ( -BL*XX({) ) -DEXP { -BL*XX((+1
81 CONTINUE
APD=APD+DEXP2-AL*X N
APF=APF+DEXP (-BL*X(N
APC M,I; 21 0DO+DLOG§4 ono*c); (4.0
AFC(M I)=(1.0DO+DLOG( (4.0DO*C)* 2))/(4 ono*c)**z
M,I,N)=APD
PF1(M I N)=APF
R3§H I, Nj=1.0D0+C1(M)*PF1(M, I ,N)-PD1(M,I,N)
R4 (M. I)=1.0D0+C1(M)*AFC(M,I}-APC(M,I)
DO 120 J=1.N
C*******************x*******x**
C OUTPUT QUANTIZER PARAMETERS
WRITE(9,62) XX(J),TT(J)
120  CONTINUE
WRITE(9,90)

20 CONTINUE
11 CONTINUE
WRITE(9,90)
c WRITE(9,90)

WRITE(8,90)
500 CONTINUE
DO 501 J=1,2
DO 502 I=1.20 )
AP2=1.0D0/(2.0D0*C1(I))
AF2=3aP27*2

RR2=1. ODO+C1(I)*AF2 APZ
C********x*xw**x*xxx*x*xx*x* * R

WRITE(10, 61)C1&Il*§§2,( R3(I,J,N) ,N=3,6),R4(I,J)

WRITE(8,61)AP2,AF2,( PD1(I,J,N),PF1(I,J,N) ,N=3,5),APC(I,J)
1,AFC(I.J)
502 CONTINUE
WRITE(8,90)
501 CONTINUE
60 FORMATélX 16,9(1X,F6.4))
90 FORMAT (2X CON B **x*xx****x******k******************l)
61 FORMAT{1X,10(lX, F6.4;;
62  FORMAT{1X,3{1X,F15.8
STOP
END
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APPENDIX E

PROGRAM LISTING TO CALCULATE PARAMETERS OF THE TWO
QUANTIZERS FOR EXAMPLE 3, CHAPTER IV

THIS PRCGRAM CALCULATES THE OPTIMUM QUANTIZER PARAMETERS QF TWO
N-LEVEL QUANTIZERS IN ORDER TO MINIMIZE A GLOBAL SYSTEM RISK FOR
DETECTION OF SIGNALS WITH DIFFERENT VARIANCE. N=3 , N=5.

S1 = SIGNAL VARIANCE UNDER H1
SO0 = SIGNAL VARIANCE UNDER HO
Tl = QUANTIZATION POINT FOR N=3 T1,-T1 )
X1,X2 QUANTIZATION POINTS FOR N= (Xl X2,-X1,-X2)
CI(ZO) ARRAY QF RATIO OF COSTS
K = Number of iterations.
REAL*8 T1,T11,S1,S2,R,C,X2,PD,PF,C1(15), z31 Z221,X3,X33,%22
K 1,TS,58S TTT(lO) Xl PD3 PF3 PDC PFC R2, R3
DN INTEGER K,N,K1
DATA C1/01.0D0,.9OODO,.BOODO,.7OOD0,0.60D0 .50D0,0.40D0
1%i3%0%0%.2000 ,0.10D0, .090D0, .080D0, .070D0,0 OGODO 050D0/
S0=DSQRT(2.0D0)
¢ INITIAL VALUES OF THE QUANTIZER PARAMETERS
T1=01.15800D0
®1=01.15800D0
X2=00.15800D0
WRITE(S6, 60§K s1,s0,C

naonoaannn

4

RS PRLA SRR

WRITE(9,60)K,S1,S0,C
WRITE 8 K,S1, SO C
/SO**Z .0D0/S1**2)/2.0D0

-
wn
[71]
U'
"\

1.
1
0
I

)

-~
1]
O

S K=K+1
IF (K .GT.100) GO TO 10
T11=T1
TS=(DLOG(51/SO)+
1DLOG(C )+DLOG((DERF(T1/DSORT§2 l
1/50))/(DERF(T1/DSQRT(2.000)/S1)))*DFLOAT(N-1))/S5S
C IF (TS .GT. 0.0D0) T1l= DSQRT(TS
Tl= DSQRT(DSQRT(TS))
TF((DABS(T1-Tl1l) .GT. 0.10D-05)) GO TO 5
CONTINUE
10 TTT(N)=T11
K1=0 !
55 K1=K1l+1
IF (K1 .GT.100) GO TOQ 15 !
B A33=X3
X22=X2
X2=(DLOG(S1/S0)+
lDLOG(C)+DLOG((DERF(XB/DSQRT}Z 0Do ;
1/50))/(DERF(X3/DSQRT(2.0D0)/S1))))/SSS
C IF (TS .GT. 0.0D0) T1=DSGRT(TS)
X2=DSQRT(X2)
2. ODOE/SO

".J ELPS

\I&: a ") { .

AN

Z230=DERF(X3/DSQRT
Z220=DERF(X2/DSQRT(2.0D0) /S0
Z231=DERF(X3/DSQRT(2.0D0)/S1
Z21=DERF(X2/DSQRT(2.0D0)/S1
X3=(DLOG(S1/50)+
1DLCG(C)+DLOG((230-220)/(231-221)))/SSS
X3= DSQRT(DABS(K3;)
IF(((DaBS(X2-xr22 GT. 0.10D-05)) .OR.(( DABS(X3-X33) .GT.
10.10D0-05))) GO TQ 55

CONTINUE
15 TTT(N)=T11

o AN
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o
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Q

TS=-DLOG(SQ0**2/S1**2/C)/SSS
PDC=1.0D0~ DEXPz TS/éZ 000*51*51;3
PFC=1.0D0-DEXP(-TS/(2.0D0*S0*S0
RC=1.0D0+C*PFC-PDC
WRITE§9 603K ,T1,T11,%X2,X22,%X3,X33
WRITE(6,60)K,T1,T11
PD-DERF&TII/DSQRT%Z ODO;/Slg**N
PF=DERF(T11/DSORT(2.0D0)/S0)**N
PD3= R(ZDE]izFOE(OZ‘*ZC/D R?I' 2. ODO)/SI)*Z O0DO-DERF(X33/DSQRT(2.0D0)/S1))
= \ S S1
1 *DERF(X33/DS RT(Z% 3 2
PF3=(DERF( X22/DS RTS ODO)/SO)*Z O0DO-DERF(X33/DSQRT(2.0D0)/S0))
1 *DERF(X33/DS RT(2.
R3=1.0D0+C*PF3- PD3
WRITE§8 60)N,PDC,PFC,PD,PF,PD3,PF3

WRITE(10,60)N,C,R2 R3, R
c IF ((I .EQ. 1 o g 10 )) WRITE(10,60)N,C,R2,R3,RC
wa:rs(s 60)N,C,TTT(N) PD,PF,PD3,PF3
100 CONTINUE
101 CONTINUE
60 FORMAT(1X,I3,6(1X,F10.7))
STOP
END
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APPENDIX F

LINEAR MINIMUM MEAN SQUARE ESTIMATE OF Y,

Having ¥ ={ Y1q Y2 ]! the LMMS estimate of ¥, and the corresponding mean

square error are given by [34]:

A

v, = E{(y, IE(XI'}'2
and
Efe? )= E{y,® -E{y, I')E{Z L'} E{Z v, )
where
E{y, I'}=[Ely; vq) Ely, ;1]

and

EZT) = E(v*q) E{y,¥,)
TT 0 Bl EGY)

The entries of these matrices are:

o
E{y; yiq) =3~’a {’1 Q Ely, 'y =Q)

N
=LhQC

N
E{y, ¥1q) ='jZIPj Q E{y; /¥4 =Q)

but

(F.1)

(F.3)

(F.4)

(F.5)

(F.6)

R N ¢
: 'Q;}Jz.md}iﬁﬁﬁ



E{y; /914 =Q }=E{{yy/ ¥, /714 =Q} (F.7)

For the case where ¥, and y, are jointly gaussian, we can write

= 2
E{y, Y1q }=po, o, (F.9)
E(y)q") —-j-_ile Q;, (F.10)
=¢’n.

Inserting these in (F.1 ) and (F.2 ) and performing matrix multiplications yields

A g
¥ = [(1- PPy o —(np? )yz] ‘(n-n?p?) (6.2)
2
and
E{e?} =62 (1-p? )(1-0 )(1-p? @) (6.11)

where ® is given by:

o =p’m. (6.12)
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APPENDIX G

SOLUTION OF THE LLOYD-MAX QUANTIZER PARAMETERS BY
THE METHOD OF SUCCESSIVE SUBSTITUTION

1. INTRODUCTION

The minimum distortion quantizer parameters [18,23], as well as parameters
based on other criterion such as quantizers for signal detection [41], minimum risk
quantizers and quantizers for LMMS estimation ¢rror dealt with in this thesis, can be
solved by Max’'s trial and error technique [18]. There are also many other
approximation methods to calculate the quantizer parameters [42], [43] and [44].

In this Appendix we apply the method of successive substitution and its
modifications [19] to solve for the Lloyd-Max quantizer parameters. It is more accurate
and computationally more efficient than the previously reported methods. It is shown

to easily generate 7 bit (128 level) optimum quantization.

2. STATEMENT OF THE PROBLEM
The Lloyd-Max minimum mecan square distortion quantizer problem deals with
transforming a random variable X of differentiable probability density function f{x)

into the N-level discrete random variable Y.

Y(X)=Y, for X e [, X, ] (G.1) |

The optimum parameters minimize the distortion D
o
D= % i*kx-y. )% fx) dx G.2
ié_,ljxi {x-y; ) f1x) (G.2)

with

- = < —_

0 XISXZ—...SXNSXN+1 0
Differentiating D with respect to x; and y, vields the following necessary conditions of
optimality :

X, =(¥, +¥,,, 02 i=23,..N (G.3)

1 1
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v, =(f :*1 x(X)dx)/( ii“ fix)dx ) i=1,2,.N (G.4)

1

a set of simultaneous equations of propagating character. That is, if y, is chosen
correctly then X, can be calculated from (G.4 ), ¥, from (G.3 ), x; from (G.4 ) and so
forth [18]. In this case the value of ¥y calculated from (G.3 ) must agree with its value
calculated from (G.4 ) with Xy+p =R . This was the core of Max's trial and error
algorithm; to pick a value for ¥y, and calculate the parameters up to and including YN
which must agree with the value of yy calculated from (G.4 ), otherwise, to pick

another value of y;. Let us put the system of equations in the form
Z2 =G(2) (G.5)
where Z 1s a 2N-1 vector given by:
Z =¥ X ¥, ¥y T (G.6)
and apply the iterative substitution
Zhew =€ (Z44) (G.7)

with a suitable initial guess. The convergence is guaranteed if 8 G, /0 Zj is sufficiently
small for every k,j=1,2...,2N-1[19]. From (G.4)

Qs

d Gj 3 yi =[(xj+1 'yj' )f(Xi+l )+(y]' ~Xj )f(‘(] )]”(2Pj ) (GS)

where Pj is the probability the input of the quantizer is in the jy, interval.

P = j‘:f“ fx)dx. (G.9)
}

The numerator in (G.8 ) is an approximation of the integral in (G.9 ) by the
trapezoidal rule with the subdivision [xj Vi X4 ], so the value of the derivative is

very likely less than one. Also, substituting for Y, and Y+ in (G.3) from (G.4 ) and

differentiating with respect to X, it is easily to show that
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d G, /0 X; = (y; -%; 0% J(2P)+(x; -¥;, )Rx; )2P, (G.10)

- S

PRERERFAL SENE I Y o A .

which is less than (0 G, /0 y;)- The method can be more efficient if we use the updated

values in the same iteration. In this modification of the method the best current
W values of the parameters are used. This choice may also enhance convergence. The
W method also avoids the tedious calculation of the upper limit of the integral to solve for
= the next x; in (G.4 ).
i 3. NUMERICAL RESULTS
"' We have solved for the quantizer parameters for a gaussian random variable of
i:; zero mean and unit variance for several values of N up to 128. Also the mean square
s error D and the output entropy (-Zk P, log, (P, )) have been calculated. The results
( presented in Table 4 show that in several cases Max's resuits, which were only
:: available up to N\ =36, are not accurate in the last digit.
::; Key to Table 4
::: The numbering in the table is as follows.
‘.. 1. For N even, each tab%e begins with the (\/2+ 1), parameters. In this case the
0 (N/2+1),, value of x is zero.

2. For N odd, Each table begins with the (N/2+2) parameters. In this case the
(N/2+2),, value of v is zero.

't o N

( Negative parameters can be calculated from the symmetry relation
,.J . .
»’ Xj = Xn-j+2 (G.11)
r and

= v 0]
Y, = Yo+ - (G.12)

A FORTRAN program to calculate the parameters ,distortion and entropy
follows Table 4. The only input to the program is N, the number of quantization levels.
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MAX'S QUANTIZER PARAMETERS FOR THE NORMAL DISTRIBUTION (CONT'D))
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TABLE 4
MAX'S QUANTIZER PARAMETERS FOR THE NORMAL DISTRIBUTION (CONT'D.)
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4. PROGRAM LISTING TO CALCULATE THE LLOYD-MAX QUANTIZER

PARAMETERS

C THIS PROGRAM CALCULATES LLOYD-MAX QUANTIZER PARAMETERS BY THE METHOD
C OF SUCCESSIVE SUBSTITUTION FOR THE NORMAL DISTRIBUTION OF ZERO MEAN

C AND UNIT VARIANCE
C The INPUT TO THE PROGRAM IS
1 THE NUMBER OF QUANTIZATION LEVELS N
2 THE MAXIMUM NUMBER OF ITERATIONS M
2 THE ACCURACY
e 7 e 7 7 e e A e A e S T s ok e ok Fe e e T ke ok ke ke ok e ek

REAL*8 X(199),T(199),XX(199),TT(199),C ,DELTA,AP(199),AP
1,ERROR, ENTROP

INTEGER K,N,I,P N1, N2,N3,M

C=DSQRT (00. SODO/DATAN(I 600})
DO 99 N'llO 110
C******x*xRxx**xxx*xx****************************************
C INPUT THE NUMBER OF QUANTIZATION LEVELS
warrsgg,ss N

nanon

WRITE(9,66
WRITE(9
WRITE(9,666
CRkddddek xR & kR R K 5k ek e ek sk ek ke sk e Ak o e e e ek sk 5k e ok ok gk e e ok ok gk g e e

g INITIALIZATION OF THE QUANTIZER PARAMETERS

DELTA=0.0150DO*DFLOAT(N)
XX§1;=-10.SOOOODO

TT(1)=-5.50000D0

x§1 =xx§1g

T(1)=TT(1

DO 50 L=2 N
TT§L§=TT(L~1)-DELTA
XX(L)=(TT(I)+TT(I-1))/2.0D0
XEL;=XX2L3
T(L)=TT(L

50 CONTINUE
C Rk ek e KRR &R TR K e de sk Kk ok ok ok ok sk e ek ok ok ok ok Tk kg ek ke e e e ok o ok ok ok e
c BEGINING OF THE ITERATIONS
c M = MAXIMUM NUMBER OF ITERATIONS
M = 1050
K=0
5 K=K+1
IF (K .GT. M) GO TO 19

IF sx .GT. 1 X§N =xX N
IF (K .GT. 1)T(NJ=TT(N
TT(1)=-C*DEXP(-xX z)*xx /2.0D0)/ (DERFC(-10.0D0)~
1oza5c<xxg2)/osgar .0D0))
T(1)=TT(1l)
IF ( N ,EQ. 2 ) GO TO 17
DO 15 P=2,N-1
XX(P)=(T(P)+T(P 1))/2.0D0
X(P)=XX(P )
Trgp =DEX } )*X(P)/2.0D0)-DEXP(-X(P+1)*X(P+1)/2.0D
. Ogg)p =TT(P)*C (DERFC(X(P)/DSQRT(2.0D0))-=DERFC(X(P+1)/D
T(P§=TT(P)
15 CONTINUE
17 CONTINUE
XX(N)=(TT(N)+T(N-1))/2
TT§N)K§EQP( KX (N)*XZ(N)/2. 0D0)*C/DERFC(XX(N)/DSQRT(Z 0D0))
g” =TT(N
N =IDINT$DFLOAT€§N+2 /2
N1=IDINT(DFLOAT((N+1)/2
C******xxx*x*x************* x* khkkhkikrkhkkhhkhkkhkkArkhkkhkii

C CHECKING THE PRECISION OF THE SOLUTION
c AP = REQUIRED ACCURACY
AP=0.10D-6
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. AP))GO TO

nggnoo§n,2) :EQ. 0) .AND. (DABS (X 2&i§§.cr. AP))GO

(
IF((MOD(N+1,2) .EQ. 0).AND. (DABS
CONTINUE

10 CONTINUE
CHededede sk k ek K sk e Ao A e e e ok e sk e e ek e de A e Ak e o ke ok sk e sk ke ok ok ke ok e e ok
c OUTPUT RESULTS
IF EMODiN,Z) .EQ. 0)N3=N2

N2
(T

IF (MOD(N+1,2) .EQ. O)N3=N1
WRITE(6,60) K
DO 120 J=1,N3
IF (J .EQ. 1)
1 WRITE(9,71)J, T(J)
IF (J .GT.
1 WRITE(9,61)J, X(J),T(J)

120 CONTINUE
X2N+1)=10.0DO
X(1)=-10.0D0

ERROR=0.0D0O

ENTROP=0.0D0

DO 222 I=1,N

5
TO 5

AP(1 =DERFC}§(8%6DSQRT(2.0DO))-DERFC(X(I+1)/DSQRT(2.0DO))

AP(I)=AP(I .

ERROR=ERROR+AP(I)*T(I)**2
ENTROP=ENTROP-AP(I)*DLOG(AP(I))/DLOG(2.0D0)
222 CONTINUE

ERROR=1.0D0-ERROR
WRITE(9,66
WRITE(9-62) ERROR
WRITE(9,66
WRITE(9,63) ENTROP
WRITE(9,66
WRITE(6,72) K
WRITE(9,90
WRITE(9,66
C99  CONTINUE
65 FORMAT(3X,' N = ',I17)
66 FORMAT(3X,'==c=v=cceccccccerccccaaaax '3
67 FORMAT(3X, ' Y '

J X
60 FORMAT(1X,I7,8(1X,F6.4))

90 FORMAT(2X

61 FORMAT(1X,I4, 2(2X,F9.6))
71 FORMAT(1X,I4.11X, 2(2X,F9.6))

62 FORMAT(7X,'ERROR  =', 2(1X,F9.6))
72 FORMAT(3X,'# ITERATIONS = ',I7
63 FORMAT(7X, 'ENTROPY =', 2(1X,F9.6))
STOP
END
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